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This monograph is the most concise and complete intro-
duction to stochastic processes.

Definition. A stochastic process ξυ is defined in the literature as a collection of infinite number of random variables {ξυ} indexed
by υ ∈ X, a countable or an uncountable set, whose conditional and joint and therefore, marginal distributions of any subset of
finite number of these variables are valid and compatible, that is, their corresponding cumulative probability density functions
F{·} must satisfy the following conditions

Fξ1,ξ2,...,ξk+1
(ξ1 < z1, . . . , ξk < zk, ξk+1 <∞) = Fξ1,ξ2,...,ξk(ξ1 < z1, . . . , ξk < zk) ,

Fξs1 ,ξs3 |ξs2 (ξs1 < zs1 , ξs3 <∞ | ξs2) = Fξs1 |ξs2 (ξs1 < zs1 | ξs2) ,

Fξs1 ,ξs2 (ξs1 < zs1 , ξs2 < zs2) = Fξs1 |ξs2 (ξs1 < zs1 | ξs2 < zs2)Fξs2 (ξs2 < zs2) ,

(1)

where s1, s2 and s3 are disjoint subsets of random variables from the collection {ξυ}. The process ξυ may also be equivalently
denoted as ξ(υ). (υ is the Greek letter Upsilon.)

The word “process” means that there is the development of events which are not independent from each other this way or
another. Therefore, the collection of dependent random variables, which satisfy (1) is called the process. The infinite collection of
random variables which depend only on index υ, but are independent pairwise, is also called a stochastic process. A collection of
independent random variables which do not depend on index υ either, satisfies the definition of a stochastic process, although the
essential idea of the “process” is lost.

If υ ∈ X ⊂ R comes from a subset of real numbers, e.g. X = (−∞,∞) or X = [0,∞), we call ξυ a stochastic process in
continuous time. One example of such a process is a Gaussian process. This process is well-introduced in the monograph [2]
and research [3,4], where other constructions based on Gaussian processes, a censored Gaussian Process and a T-process are
given. In this monograph we consider stochastic processes indexed by υ from a countable set. The simplest construction uses
X = N≥0 = {0, 1, 2, . . .}, a set of natural numbers. The mathematical model of division of cells is considered and serves as an
example of such processes.

A collection of random variables ζι, ι ∈ X = N≥0 is called a stochastic process in discrete time, or a discrete time series with
equidistant lags which are all equal to one. One example of such series is considered in [1]. Another example is provided in this
monograph.
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1 Mathematical model of division of cells

The model of the division of cells which is developed in this monograph is a convenient mathematical construction for illustration
of the notion of a stochastic process.

Deterministic model. Suppose that a cell divides with some constant rate, say, providing u cells per unit time. That is, e.g.,
either a cell provides u new cells and disappears itself at each unit time; or a cell provides u−1 new cells and stays alive, therefore,
having the total amount of generated cells equal to u cells per unit time.

Proposition. The number of cells at t units of time is ut = 2(log2 u)t, resulting in exponential growth of the total number of
cells. Proof. Relies on combinatorics. �

This model may be considered as a simple mathematical model which deterministically finds the total number of cells at time
t given the rate of division, the number of cells produced by a single cell per unit time. The unit time is relative: u cells per unit
time is equivalent to, for example, 2 cells per log2 u units of time or ` cells per log` u units of time.

Probabilistic modeling. In nature we observe variation in outcomes of the same phenomenon which more or less are developed
in the same conditions. The idea is to account for this variation by introducing probabilistic modeling of the division of cells, in
place of the deterministic approach. The attempt is to construct a simple probabilistic model of the division of cells.

Let the process of division start with one cell, that is at time zero ζ0 = 1 cell. Let each cell divide with probability 0 < c < 1,
stay the same with probability 0 < b < 1 and die with probability a = 1− b− c. Formally, the number of cells at time point ι = 1
is a random variable ζ1

ζ1 =


0 , a ,

1 , b ,

2 , c ,

(2)

where (a, b, c)T is a simplex vector of probabilities of order two. Then, the distribution of the number of cells at any time point
may be deduced.

Lemma. The conditional distribution of the number of cells ζι at any other index ι ≥ 1, given the number of cells at the
previous time step ι− 1, is

P (ζι | ζι−1) =

{∑(ζι−ζιmod 2)/2
j=0 C

ζι−1−ζι+j
ζι−1

aζι−1−ζι+jCζι−2jζι−j b
ζι−2j(1− a− b)j , ζι ≤ ζι−1 ;∑(ζ′ι−ζ

′
ιmod 2)/2

j=0 C
ζι−1−ζ′ι+j
ζι−1

(1− a− b)ζι−1−ζ′ι+jC
ζ′ι−2j
ζ′ι−j

bζ
′
ι−2jaj , ζι > ζι−1 ,

(3)

where ζι ∈ Ωι|ι−1 = {0, . . . , 2ζι−1}, the conditional space of outcomes at time point ι; j ∈ N≥1; ζ ′ι = 2ζι−1− ζι. 1 2 3 Proof. Relies
on combinatorics. �

Theorem. ζ(ι) = ζι, ι ∈ X = N≥0 is a stochastic process in discrete time. Proof. ζι satisfies (1) by construction. �
Theorem. The conditional distribution (3) is stationary. Proof. The expression of the conditional distribution does not

depend on ι, but only on the values of ζι and ζι−1 themselves. �
Theorem. If a 6= c, then the process ζι is non-stationary in any sense. Proof. Distributional characteristics (such as,

cumulative distribution function, expectation, correlation among pairs of variables) of the process ζι change with ι; that is, they
do not stay the same for any positive time lag λ. Proof. Consider the distributional characteristics to see that this is indeed so. �

Theorem. If a = c, then the process is stationary in the mean, but not in correlation or cumulative distribution function.
Proof. Relies on results in section 7.1 which discusses this special case. �

Theorem. The process ζι is a discrete time Markov chain. Proof. The probability of the number of cells conditionally depends
only on the number of cells observed at the previous time point; and does not depend on the numbers of cells observed at any
other time point. �

Lemma. The marginal probabilities for all ι ≥ 1

P (ζι = γ) =

2ι−1∑
j=(γ+γmod 2)/2

P (ζι = γ | ζι−1 = j)P (ζι−1 = j) , (4)

where ζι ∈ Ωι = {0, 1, . . . , 2ι}, the marginal space of outcomes at time ι. Proof. Since P
(
ζι−1 = j < γ+γmod 2

2 | ζι = γ
)

= 0, the

lemma holds true. �

1Cy
w = y!

w!(w−y)!
is the number of unordered selections of y objects out of w objects.

2mmodu is the remainder from the division of m ∈ N≥0 over u ∈ N≥1.
3The expression (3) implicitly assumes that 00 = 1.
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2 The model of division of cells with the restriction on the total amount of cells

Suppose we are interested in developing a model such that at any given time point of the division process there exists a limit on
the total amount of cells possible to occur. Such a model is convenient to construct building on the results from the model in the
previous section. In order to formulate the model and describe the corresponding stochastic process, we must find its conditional
probability of the number of cells ζψι occurring at time point ι given the number of cells occurring at time point ι − 1, while
incorporating the information about the limit max ζι = ψ for all ι ∈ N≥0, where ψ ∈ N≥1.

Lemma. In the presence of the limit ψ on the total amount of cells occurring at any time point ι and denoted as ζψι , the
following conditional distribution occurs

P (ζψι = γ | ζψι−1 = κ) =

P (ζι = γ | ζι−1 = κ ≤ ψ,max ζι = ψ) = P (ζι=γ|ζι−1=κ)∑min(ψ,2ι,2κ)
j=0 P (ζι=j|ζι−1=κ)

,

P (ζι = γ | ζι−1 = κ > ψ,max ζι = ψ) = 0 ,
(5)

where for each ι ∈ N≥1 the number of cells ζψι ∈ Ωι|ι−1,ψ = {0, 1, . . . ,min(ψ, 2ι, 2ζι−1)} is the conditional space of outcomes in the
presence of the limit ψ. Proof. Since P (ζι = j > min(ψ, 2ι, 2κ) | ζι−1 = κ) = 0, the lemma holds true. �

Algorithm C1 in section 8 prototypes the programmed solution for computation of the conditional probabilities.
Lemma. The marginal probabilities of the number of cells ζψι to occur in the presence of the limit ψ at time point ι are

P (ζψι = γ) =



P (ζι = γ | max ζι = ψ < 2ι, (γ + γmod 2)/2 ≤ ψ) =

=

min(2ι−1,ψ)∑
κ= γ+γmod 2

2

P (ζι = γ | ζι−1 = κ)P (ζι−1 = κ | max ζι−1 = ψ) ,

P (ζι = γ | max ζι = ψ ≥ 2ι) = P (ζι = γ) ,

P (ζι = γ | max ζι = ψ < 2ι, (γ + γmod 2)/2 > ψ) = 0 ,

(6)

where for each ι ∈ N≥1 the number of cells ζψι ∈ Ωι,ψ = {0, 1, . . . ,min(ψ, 2ι)} is the marginal space of outcomes in the presence of
the limit ψ. Proof. By construction. �

Algorithm C2 in section 8 provides the programmed solution for computation of the marginal probabilities.
Theorem. ζψ(ι) = ζψι , ι ∈ X = N≥0 is a stochastic process in discrete time. Proof. ζψι satisfies (1) by construction. �

3 Computational lemmas

For the implementation of the models (with and without a restriction ψ) the following computational lemmas have been found
to be useful for enabling computations and/or speeding up the computing time of the conditional and marginal probabilities of
interest.

Lemma. If ζι−1 − ζι + j > 0, then

P (ζι | ζι−1) = a(1 + (ζι − j)/(ζι−1 − ζι + j))P (ζι | ζι−1 − 1) . (7)

Lemma. Expressions of the type Cm−ζm am−ζbζ are simplified for computations as

Cm−ζm am−ζbζ =


am−2ζ

ζ∏
j=1

(
ab

(
1 +

m− ζ
j

))
, m > 2ζ ;

(1− a)2ζ
m−ζ∏
j=1

(
ab

(
1 +

ζ

j

))
, m ≤ 2ζ .

(8)

Lemma. Computational simplifications of the extreme cases, such that the simplex vector of initial probabilities (a, b, c =
1− a− b)T of order 2 is reduced to the vector of order 1

P (ζι | ζι−1, 1− a− b = 0) =

{
C
ζι−1−ζι
ζι−1

aζι−1−ζιbζι , if ζι−1 ≥ ζι ;

0 , otherwise.

P (ζι | ζι−1, a = 0) =

{
C

2ζι−1−ζι
ζι−1

b2ζι−1−ζι(1− b)ζι−ζι−1 , if ζι−1 ≤ ζι ≤ 2ζι−1 ;

0 , otherwise.

P (ζι | ζι−1, b = 0) =

{
C
ζι−1−ζι/2
ζι−1

aζι−1−ζι/2(1− a)ζι/2 , if ζι ≤ 2ζι−1 and ζι mod 2 = 0 ;

0 , otherwise.

(9)
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Figure 1: Left plot: bright green connected points is a random sample generated from the model of division of cells specified by the simplex
vector of probabilities with a = 0.18750 and b = 0.28125, the limit ψ = 36. The observed time period T = 20. Light green pairs of points
are 2.5% and 97.5% quantiles of the distribution of the number of cells at each time point ι ∈ {0, 1, . . . , T}. Light brown (beige) area is
the 95% central credible area enclosed between the selected quantiles. The dark brown connected points are the median of the distribution
of the number of cells. Right plot: bright pink connected points is a sample from the marginal distributions of the same model over index
ι ∈ {0, 1, . . . , T}. The rest of the plot coincides with the left plot.

Lemma. The conditional probabilities depending on various values of the limit ψ and the number of cells at the previous step
ζψι−1 are simplified

P (ζψι = γ | ζψι−1 = κ) =


P (ζι = γ | ζι−1 = κ ≤ ψ,ψ ≥ 2ι) = P (ζι = γ | ζι−1 = κ) ,

P (ζι = γ | ζι−1 = κ, ψ < 2ι, 2κ ≤ ψ) = P (ζι = γ | ζι−1 = κ) ,

P (ζι = γ | ζι−1 = κ ≤ ψ,ψ < 2ι, 2κ > ψ) = P (ζι=γ|ζι−1=κ)∑ψ
j=0 P (ζι=α|ζι−1=κ)

.

(10)

4 Generation of a random sample path from the models

One possibility to obtain an example of how the number of cells are evolved in time, a random sample from the model, is to simply
generate a random variable which gives zero, one or two cells at time ι (with fixed probabilities a, b, c) for every cell at time ι− 1
and calculate the sum of the outcomes to get the total number of cells. If the total number of cells at time ι occurs to be greater
than the limit ψ, this means, that at time ι an impossible event (the number of cells greater than the limit) has occurred. Thus,
one must discard this sample and repeat the generation process until a possible event (the number of cells less than or equal to
the limit) occurs. The necessity to discard samples slows down the computations. In order to avoid this burden, one relies on the
derived formulae of conditional probabilities (3) and (5) and computational lemmas (7), (8), (9), (10) for the implementation of the
model. Doing so, one obtains a true sample path ω = (ω1, ω2, . . . , ωT ) from the model with the restriction ψ, where ωι ∈ Ωι|ι−1,ψ
for ι ∈ {1, 2, . . . , T}. T is the observed time index period.

An example of a random sample from the model of division of cells with the fixed probability vector (a = 0.18750, b =
0.28125, c = 0.53125)T, the limit ψ = 36 and the time period T = 20 is shown in Figure 1, left plot.

Producing a sample by using marginal distributions only, that is ν = (ν1, ν2, . . . , νT ), such that νι ∈ Ωι,ψ; that is νι is
independent from νι′ 6=ι, one neglects the correlation structure among variables, and the sample ν is not from the model. The
representation of the sample path is its trajectory, which is lost if the variables are independent over index ι ∈ X = {0, 1, . . .}. An
example of a sample ν is given on the right plot of Figure 1. Analogous loss of correlation structure for the processes in continuous
time is discussed and illustrated in [5].

5 Model of division of cells with other rates of division

Suppose that a model considered in section 1 now has the probability rate of division of cells such that a single cell produces up
to u ∈ N≥3 number of cells per unit time.

3
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Theorem. Let the number of produced cells by a single cell in one time step be a random variable whose outcomes α =
{0, 1, . . . , u} are distributed with the simplex probability vector a0:u = {a0, a1, . . . , au}T, then the conditional probability of the
number of cells

P (ζuι | ζuι−1) =


∑

τ :(τ ,α)=ζuι

Cτ0ζι−1
aτ00 C

τ1
ζι−1−τ0a

τ1
1 · . . . · C

τu−1

ζι−1−
∑u−2
j=0 τj

a
τu−1

u−1 a
τu
u , 0 ≤ ζuι ≤ uζuι−1 ;

0 , otherwise,

(11)

where τ = (τ0, τ1, . . . , τu) with τj ∈ N≥0 for all j and are subject to the constraint
∑u
j=0 τj = ζuι−1. Proof. The formula is derived

using combinatorics. �
Theorem. The marginal probability of the number of cells ζuι to occur at time ι is

P (ζuι = γ) =

uι−1∑
j= γ+r

u

P (ζuι = γ | ζuι−1 = j)P (ζuι−1 = j) (12)

for all ι ≥ 1 and u ≥ 2, where r ∈ {0, 1, . . . , u− 1} is such that (γ + r) modu = 0. Proof. P
(
ζuι−1 = j < γ+r

u | ζ
u
ι = γ

)
= 0. �

Theorem. ζu(ι) = ζuι , ι ∈ X = N≥0 is a stochastic process in discrete time. Proof. ζuι satisfies (1) by construction. �

5.1 Algorithm for identifying vectors τ in the expression (11)

Denote as Υu
ι|ι−1 the desired set of all vectors τ with non-negative integer-valued entries that satisfy (τ ,α) = ζuι and

∑u
j=0 = ζuι−1.

Define the following sets of elements

Ξu =
{

0, 1, . . . ,min
{
ζuι−1, bζuι /uc

}}
,

Ξu−k+1 =

0, 1, . . . ,min

ζuι−1 −
u∑

j=u−k+2

τj , b(ζuι −
u∑

j=u−k+2

jτj)/uc


 (13)

for all k = 2, 3, . . . , u− 1.4

Algorithm

(1) Start with k = 1.

(2) For each element τu−k+1 ∈ Ξu−k+1

if ζuι −
∑u
j=u−k+1 jτj ≥ 0 and ζuι−1 −

∑u
j=u−k+1 τj ≥ 0 are both true

then there may exist a vector τ whose entries τu−k+1, . . . , τu form part of a vector from the set Υu
ι|ι−1

if u− k + 1 > 2

store in memory the current value of τu−k+1

increase the value of k by one, that is k := k + 1

repeat the procedure (2) for searching the next entry of a vector τ

else {
τ1 = ζuι −

∑u
j=2 jτj

if τ1 ≥ 0 then τ0 = ζuι−1 −
∑u
j=1 τj

if τ0 ≥ 0 then we have found a valid sample τ = {τ0, τ1, . . . , τu} from the desired set Υu
ι|ι−1.

}
end

4bm/uc = m−mmodu
u

.
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6 Model in section 5 with the limit on the total amount of cells

Lemma. The following conditional distribution is a generalization to the number of cells u occurring with a vector of probabilities

P (ζu,ψι = γ | ζu,ψι−1 = κ) = P (ζι = γ | ζι−1 = κ ≤ ψ,ψ <∞) =


P (ζι=γ|ζι−1=κ)∑min(ψ,uι,uκ)

j=0 P (ζι=j|ζι−1=κ)
, ψ ≤ uκ ;

P (ζι = γ | ζι−1 = κ) , ψ > uκ .
(14)

Theorem. The marginal probability of the number of cells ζu,ψι to occur at time ι is

P (ζu,ψι = γ) =



P (ζι = γ | max ζι = ψ, (γ + r)/u ≤ ψ) =

=

min(uι−1,ψ)∑
j= γ+r

u

P (ζι = γ | ζι−1 = j,max ζι = ψ)P (ζι−1 = j | max ζι−1 = ψ) ,

P (ζι = γ | max ζι = ψ ≥ uι) = P (ζι = γ) ,

P (ζι = γ | max ζι = ψ < uι, (γ + r)/u > ψ) = 0 .

(15)

Theorem. ζu,ψ(ι) = ζu,ψι , ι ∈ X = N≥0 is a stochastic process in discrete time. Proof. ζu,ψι satisfies (1) by construction. �
Theorem. Let w > u, then ζu,ψι → ζw,ψι , ι ∈ X = N≥0 in distribution as a(w+1):u → 0. Proof. By construction. �
Several analogous theorems as the ones regarding the stochastic process ζu=2,ψ=∞

ι = ζψ=∞ι = ζu=2
ι = ζι are generalizable to

the processes ζψι , ζ
u
ι and ζu,ψι .

Lemma. (a) In the presence of two types of cells and assuming each type of cell is independent from another

P (ζι, ηι | ζι−1, ηι−1, ψ) =
P (ζι | ζι−1)P (ηι | ηι−1)∑ψ

ζι+ηι=0 P (ζι | ζι−1)P (ηι | ηι−1)
. (16)

(b) If the number of different types of cells is S > 2 with corresponding processes for each type of cells denoted as
{φsι} for s ∈ {1, 2, . . . , S}, then

P (φ1ι , . . . , φ
S
ι | φ1ι−1, . . . , φSι−1, ψ) =

S∏
s=1

P (φsι | φsι−1)

ψ∑
φ1
ι+...+φ

S
ι =0

S∏
s=1

P (φsι | φsι−1)

. (17)

7 Appendix

The following is a set of auxiliary mathematical statements which provide details on the considered models. The proofs are
omitted.

Lemma. Distributions P (ζι | ζι−1) given by (3) may be either uni- or multi-modal.
Proposition. Alternative form for the expression (3) is

P (ζι | ζι−1) =


∑(ζι−ζιmod 2)/2
j=0

ζι−1!a
ζι−1−ζι+jbζι−2j(1−a−b)j

(ζι−1−ζι+j)!(ζι−2j)!j! , ζι ≤ ζι−1 ,∑(ζ′ι−ζ
′
ιmod 2)/2

j=0
ζι−1!c

ζι−1−ζ
′
ι+jbζ

′
ι−2jaj

(ζι−1−ζ′ι+j)!(ζ′ι−2j)!j!
, otherwise,

(18)

where ζ ′ι = 2ζι−1 − ζι.
Lemma. (a) Alternative form for the expression (4) of the marginal probability is

P (ζι = 2ι − β) =

(β−βmod 2)/2∑
j=0

P (ζι = β − 2j, ζι−1 = 2ι−1 − j) , (19)

where P (ζι = β − 2j, ζι−1 = 2ι−1 − j) = P (ζι = β − 2j | ζι−1 = 2ι−1 − j)P (ζι−1 = 2ι−1 − j).
(b) In particular,

P (ζι = 2ι) = c
∑ι−1
j=0 2j ,

P (ζι = 2ι − 1) = 2ι−1bc
∑ι−1
j=0 2j−1 ,

P (ζι = 2ι − 2) =
(

2ι−1ac2
ι−1−1 + 2ι−2

(
2ι−1 − 1

)
b2c2

ι−1−2 + 2ι−2bc2
ι−1−2

)
c
∑ι−2
j=0 2j ,

P (ζι = 2ι − 3) =
(

2ι−1
(
2ι−1 − 1

) (
2ι−1 − 2

)
c2
ι−1−3b3/6 + 2ι−1

(
2ι−1 − 1

)
c2
ι−1−2ba+

(
2ι−1 − 1

)
b22ι−2c2

ι−1−3
)
c
∑ι−2
j=0 2j .

(20)
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(c) At time ι = 2

P (ζ2 = 0) = a+ ab+ a2c ,

P (ζ2 = 1) = b2 + 2abc ,

P (ζ2 = 2) = bc+ b2c+ 2ac2 ,

P (ζ2 = 3) = 2bc2 ,

P (ζ2 = 4) = c3 .

(21)

Theorem. Expectation, second moment and variance are customarily defined as

Eζι =

uι∑
κ=0

κP (ζι = κ) ,

Eζ2ι =

uι∑
κ=0

κ2P (ζι = κ) ,

Vζι = Eζ2ι − (Eζι)
2 .

(22)

Correlation and autocovariance are defined as

Corr (ζι−1ζι) =
Eζι−1ζι − Eζι−1Eζι√

Vζι−1Vζι
,

Eζι−1ζι = Eζι−1
ζι−1(Eζι | ζι−1) =

uι−1∑
γ=0

γ

 2γ∑
κ=0,{κ:κ+δ

u ≤γ}

κP (ζι = κ | γ)

P (ζι−1 = γ) ,

(23)

where δ : (κ + δ) modu = 0.
The conditional expectation is

Eζι | ζι−1 =

2ζι−1∑
γ=0

γP (ζι = γ | ζι−1) . (24)

7.1 Symmetry

In this part the symmetric case, such that probability of a single cell to die is a and probability of a cell to duplicate at the next
time point c = a are equal. In other words the birth and death rates coincide.

Lemma. Conditional distributions (3) P (ζk | ζk−1) are not symmetric in general.
Lemma. The initial distribution is symmetric (that is a = c) if and only if all conditional distributions given by (25) are

symmetric.

P (ζι = γ | ζι−1 = κ) = P (ζι = 2κ − γ | ζι−1 = κ) =

(γ−γmod 2)/2∑
j=0

Cκ−γ+j
κ Cγ−2jγ−j a

κ(1/a− 2)γ−2j if γ ≤ κ . (25)

Lemma. If a = c,
Eζι | ζι−1 = ζι−1 . (26)

Theorem. If a = c, for all ι ∈ {0, 1, . . .} expectation

Eζι = 1 . (27)

is constant over time index ι.
For all ι ≥ 2 variance

Vζι = ιVζ1 (28)

is growing linearly with time. Variance at time point ι = 1 is Vζ1 = 2a.
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Theorem. If a = c, several other moments and cumulants are

E(ζι − Eζι)
3 =

(ι+ 1)(ι+ 2)

2
12a2, for ι ≥ 3 ,

E(ζ2 − Eζ2)3 = 12a2 ,

E(ζ1 − Eζ1)2ρ = 2a ,

E(ζ1 − Eζ1)2ρ+1 = 0 ,

E(ζ2 − Eζ2)4 = 4a(6a2 + 6a+ 1) ,

Eζ22 = 4a+ 1 ,

Eζ32 = 12a2 + 12a+ 1 ,

Eζ42 = 72a2 + 24a3 + 28a+ 1 ,

(29)

where ρ ∈ N≥1.

8 Code

This code is an original code written in R, free software environment for statistical computing and graphics. The code is convenient
to use for prototyping solutions of the mathematical model described in this monograph or other models based on this model.
Some parts of the code contain additional computational details too trivial for formal mathematical statements.

8.1 Algorithm C1. Computation of the conditional probability of the model with the restriction

Function cp computes the conditional probability given by (3) and lemmas on computational simplifications (9). The auxiliary
function expr computes the corresponding parts given in (3) using computational lemmas (7) and (8).

expr = function(a,b,j,kappa,n) {

if (n - kappa + j > 0) {

rslt = choose(n,n - kappa + j)*a^(n - kappa + j)*

choose(kappa - j, kappa - 2*j)*b^(kappa - 2*j)*(1 - a - b)^j

if (is.nan(rslt) || is.infinite(rslt)) {

rslt = a*(1 + (kappa - j)/(n - kappa + j))*expr(a,b,j,kappa,n-1)

}

rslt

} else {

if (n - kappa + j == 0) {

rslt = choose(kappa - j, kappa - 2*j)*b^(kappa - 2*j)*(1 - a - b)^j

if (is.nan(rslt) || is.infinite(rslt)) {

if (kappa > 3*j) {

rslt = prod(b*(1-a-b)*(1+(kappa-2*j)/(1:j)))*b^(kappa - 3*j)

}

}

rslt

} else {0}

}

}

cp <- function(v,kappa,n) {

# comment: kappa and n must be greater than zero;

# n is the number of cells at time (t-1);

# kappa is the number of cells at time t.

a = v[1]; b = v[2]

if (a == 0) {

if (kappa >= n) {

if (kappa <= 2*n) {

rslt = choose(n,2*n - kappa)*b^(2*n - kappa)*(1 - b)^(kappa - n)

if (is.nan(rslt) || is.infinite(rslt)) {

7
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if (3*n > 2*kappa) {

rslt = prod(b*(1-b)*(1 + (2*n-kappa)/(1:(kappa - n))))*b^(3*n-2*kappa)

} else {

rslt = prod(b*(1-b)*(1 + (kappa - n)/(1:(2*n - kappa))))*(1-b)^(2*kappa - 3*n)

}

}

rslt

} else {0}

} else {0}

} else {

if (b == 0) {

if (kappa <= 2*n) {

if (1 - kappa %% 2) {

rslt = choose(n,n - kappa/2)*a^(n - kappa/2)*(1 - a)^(kappa/2)

if (is.nan(rslt) || is.infinite(rslt)) {

if (n > kappa) {

rslt = prod(a*(1-a)*(1 + (n-kappa/2)/(1:(kappa/2))))*a^(n-kappa)

} else {

rslt = prod(a*(1-a)*(1 + (kappa/2)/(1:(n-kappa/2))))*(1-a)^(kappa - n)

}

}

rslt

} else {0}

} else {0}

} else {

if (a + b == 1) {

if (kappa <= n) {

rslt = choose(n,n - kappa)*a^(n - kappa)*b^kappa

if (is.nan(rslt) || is.infinite(rslt)) {

if (n > 2*kappa) {

rslt = prod(a*b*(1 + (n - kappa)/(1:kappa)))*a^(n - 2*kappa)

} else {

rslt = prod(a*b*(1 + kappa/(1:(n-kappa))))*(1-a)^(2*kappa)

}

}

rslt

} else {0}

} else {

smm = 0

if (kappa > n) {

kappa = 2*n - kappa

a = 1-a-b

}

for (j in 0:((kappa - kappa %% 2)/2)) {

smm = smm + expr(a,b,j,kappa,n)

}

smm

}

}

}

}

}

8.2 Algorithm C2. Computation of the marginal probabilities of the model with the restriction

nT = 20 # comment: the maximal number of time steps.

vpsi = 64 # comment: the limit psi

sv = c(0.33,0.44) # simplex vector of probabilities requires to set only a and b.
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D = mat.or.vec(nT + 1,vpsi + 1)

D[1,2] = 1 #P(kappa[0] = 1) = 1

for (t in 1:nT) {

for (kappa in 0:min(vpsi,2^t)) {

fp = 0

for (iot in ((kappa + kappa %% 2)/2):min(vpsi,2^(t - 1))) {

if (vpsi >= 2^t) {

dlt = cp(sv,kappa,iot)

} else {

if (vpsi >= 2*iot) {

dlt = cp(design[i,],kappa,iot)

} else {

prb = rep(0,vpsi + 1)

for (ke in 0:vpsi) {

prb[ke + 1] = cp(design[i,],ke,iot) # comment: conditional probability

}

dlt = prb[kappa + 1]/sum(prb)

}

}

fp = fp + dlt*D[t, iot + 1]

}

D[t + 1, kappa + 1] = fp

}

}

}
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