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Abstract

Stochastic approximation to a computer model generally considers the smooth output of a model.
Sometimes a computer model produces a non-smooth, zero-inflated output. Computer model TITAN2D,
given a set of initial conditions, produces an output, height of a volcano pyroclastic flow at several thousands
of spatial locations in a geographical region of interest. This output is non-negative and often results in
exact zero (indicating the absence of a flow). In order to account for a large number of zero values
in the non-negative output, a censored Gaussian stochastic process approximation to a computationally
expensive computer model is proposed. Subsequent probabilistic assessment of a hazard using the proposed
methodology is given in comparison to probabilistic assessment by other methods found in the literature.
The corresponding difference in hazard estimates appears to be dramatic, while censoring is found to be
adequate in its assessment of a probability of a hazard.

Elements of the mathematical methodology of a truncated projected GASP of a truncated output of
a computer model are presented in the appendix. Mathematical foemulae of linking a Gaussian process
emulator with either censored or truncated emulator in a sequence of two emulators are provided.

1 Introduction

Computer model TITAN2D of a volcano pyroclastic flow (Patra et al. 2005) produces output, the height of
the flow, at a set of geographical locations within a single run of the model. A single run of the model is
determined by a set of initial values of parameters supplied to a computer model for this run. The goal in this
work is to emulate the maximum height of a pyroclastic flow, a scalar output, at a set of spatial locations over
a three-dimensional input space to a computer model. Three inputs to TITAN2D simulator are the volume of
a pyroclastic flow, basal friction angle and initial direction angle.

Post-processed data output for a single run of the model is comprised of a total of 24,576 locations associated
with the island of Montserrat. These locations are given on a grid 128 × 192. Computer model has been run
500 times at various initial values.

Convenient is to consider that a computer model produces a smooth output of the model (Loeppky et al.
2009). In current work, however, the output of the model is recorded as exact zero values of the pile height of
the flow for all 500 runs at 8,491 locations, which constitutes about one third of all the locations on the grid.

For the rest of 16,085 locations within all 500 computer model runs, two thirds of the outputs resulted in
exact zero height values. The distribution of other, non-zero height values of the pyroclastic flow, is shown in
Figure 1.
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Figure 1: Distribution of non-zero height values of the pyroclastic flow on a transformed log(h+1) scale, where
h stands for the maximum height of the pyroclastic flow (in meters).

The figure reveals that a problem of emulation of non-negative output together with dominated zero-value
output accompanied by a large number of small-height values emerges in this framework.

Exact zeros of the height of a pyroclastic flow are not simply artefacts of a computer model. Zero-height
inflation appears due to the computational handling of wet-dry conditions of the flow (Aghakhani et al. 2016).
For TITAN2D unrealistically small height, that is, spurious small non-zero numerical values of the flow produced
by the model, are converted to zeros.

The problem of large volume of zero output appears in other areas related to, for example, inundation of
flows. Gopinathan et al. (2017) considered a computer model of tsunami to solve a Bayesian inverse problem
related to this model. The model produces tsunami wave height outputs which vary in their pattern depending
on a geographical location (Gopinathan 2018). In certain regions there is no flow under a particular choice of
initial conditions, thus creating large zero-flow output of a computer model. Similar output structure happens
with the model ADCIRC (Westerink et al. 1993, Asher 2018).

Several possibilities exist on how to proceed with emulation of a zero-inflated output of a simulator:

(a) Projected traditional GASP without (w/o) zeros. First possibility is to simply ignore zero-output in-
formation. Traditional GASP emulator (Bayarri et al. 2009) is trained only at points which result in
positive height of the flow. The information carried by points with zero-height output is thrown away.
This approach is considered for illustrative purposes, but this approach is usually unappealing because
important data is ignored.

(b) Projected traditional GASP with (w/) zeros. Second possibility is to treat zero-inflated output data as
regular points of a smooth function, so that this data is not discerned from positive-height data points
and are included in construction of a traditional GASP emulator of a computer model.

The zero-problem has been acknowledged before (Spiller et al. 2014) and treated through a clever
use of the two described possibilities. Authors propose the algorithmic approach to construction of
a GASP emulator via eliminating “non-important” zeros which are far away from non-zero outputs
and leaving only a few “important” zero values which surround computer model data points with
positive height of the flow according to a chosen metric between inputs of data points. While the
proposed approach is computationally and algorithmically appealing, the result is also necessarily
dependent on a chosen metric.

(c) Censored GASP. The third possibility — to account properly for zero-inflated computer model output
by constructing a censored GASP emulator of a computer model — is proposed in this work. The
mathematical methodology for construction of the censored emulator has been outlined in (Kyzyurova
2017, 2019a).
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Traditional GASP model assumes that the underlying function from a simulator is smooth. However,
this assumption is inadequate for modeling zero-inflated output of the TITAN2D computer model for
two reasons. First, a priori flow height values are non-negative, causing inherent restriction on the range
of values of the output of a computer model. Second, zero-height value of an output has a non-zero
probability to occur, as opposed to all other output values of this simulator. The proposed method is to
model height of a pyroclastic flow as censored at zero non-observed (hidden) output of a computer model,
with the traditional GASP of a computer model being an approximation to an imaginary latent model
of an output. Censoring allows to account for both, non-negative nature of the output of the model and
positive probability of occurrence of a zero-height.

The methodology proposed here is in line with methods employed for emulation of computer models with
different types of constraints on the behaviour of an underlying function or its derivatives, e.g. (Wang &
Berger 2016, Maatouk & Bay 2017).

(d) Last possibility which has been thought over is transformation of the output. While generally this is
a useful tool employed in statistical modeling, the limitation of this approach (when employed together
with GASP emulation) is very unattractive. Undesirable properties of the often used log-transformation
(suggested (O’Hagan 2006) and used (Bayarri et al. 2007)) have been demonstrated (Kyzyurova 2019c).

The rest of the manuscript is concerned with the demonstration of the mathematical methodology and
comparison of the three potential approaches: projected traditional GASP w/o zeros — method (a), projected
traditional GASP w/ zeros — method (b), and censored GASP — method (c). The last method is concluded to
be the only one that provides reasonable estimates of the probability of a hazard while either of the projected
emulators do not. TITAN2D case study concludes the main part of the manuscript.

2 Illustrative example

Function f(x) = 3x+ cos(5x) is considered in the domain x ∈ [−1, 1] censored to the output range [a = 0,∞),
that is

fa(x) = max{a, f(x)} ,

and is used as a simulator. For the construction of any Gaussian stochastic process emulators (GASPs), they are
parametrically specified with a priori linear mean function µ(·) and squared-exponential correlation function
c(·, ·). Parameters of GASPs are estimated following partially Bayesian approach presented in (Kyzyurova et al.
2018) which follows the procedure given in (Gu et al. 2018).

Two sets of input-output data points, uncensored and censored, are xO = (0.2, 0.4, 0.6, 0.8), fa(x
O) =

{f(xOi )}4i=1 and xC = (−1.0,−0.8,−0.6,−0.4,−0.2), fa(x
C) = 0 (a 5-dimensional vector of zeros). Method (a)

relies on construction of the approximation to the function fa(x), namely, traditional GASP w/o zeros,

fMa(·) | ·,xO, f(xO) ∼ GASP(µMa(·), σ2Ma(·, ·)) , (1)

the GASP which provides the estimate of the probability at any new point of interest conditional on the
uncensored observations only.

Method (b) relies on the approximation

fMb(·) | ·, (xO,xC), (f(xO), fa(x
C)) ∼ GASP(µMb(·), σ2Mb(·, ·)) , (2)

the GASP which provides the estimate of the probability at any new point conditional on both, the uncensored
and censored output from a computer model.

The GASP (1) is shown in the left panel of Figure 2. This GASP does not account for censored data
anyhow. The right panel of Figure 2 shows the GASP (2), for which inputs xC = (−1.0,−0.8,−0.6,−0.4,−0.2)
with censored outputs fa(x

C) = 0 are included as if these are true data points from the simulator f . Figure 2
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Figure 2: Left: Method (a). Latent GASP of a function fa(x). Right: Method (b). GASP with additional
xC = 0 treated as actual data. Circled points correspond to training inputs which were used to fit the emulator.
Star points correspond to censored observations.
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Figure 3: Unreasonable probabilities of a zero at testing points assigned by the projected traditional GASP
which has zero-output points included in its training set.

shows that this GASP provides very tight credible intervals in the area where censored observations occurred.
Not surprising, this GASP mean follows the output of the simulator well in the censored area, since it follows
the zero region well. In the noncensored area emulator and its 95% credible area misses true function for
x ∈ (−0.2, 0.2) with large discrepancy between the mean and the true function, and for x > 0.2 emulator also
misses original function, though it follows along it very closely.

As soon as Gaussian stochastic approximations to the computer model are constructed, probabilistic hazard
estimate may be obtained as the mass of the corresponding predictive (normal) distribution p(· | µ∗(·), σ∗2(·))
parameterized by its mean and variance being greater than zero

P (fa=0(·) = 0) = P (f(·) < 0) =

∫ 0

−∞
p(· | µ∗(·), σ∗2(·))d · . (3)

For comparison of the method (a) and method (b) probabilities of a zero-height are given for an arbitrary
chosen point xO1 = −0.2. Using the posterior predictive distribution of the GASP and relying on the estima-
tion (3), method (a) gives the probability of a simulator output being positive at the point xO1 = −0.2 as 87%;
and probability of a simulator output being exact zero at this point — only 13%. This unappealing estimation
is illustrated in the left panel of Figure 2: instead, what we would like to see is that probability of a zero at
the point xO1 = −0.2 is close to 1.

Likewise, method (b) allows for calculation of a zero-height probability using (3) based on the projected
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Figure 4: Method (c). Left: latent GASP. Right: the resulting censored GASP.

posterior of the GASP obtained by this method. Figure 2 shows that the probabilities of a zero-output do not
correspond to adequate beliefs: four regions in the censored area are alternating in their probability estimates.
Regions of input points in censored area have probabilities of a zero-output around 80-99%, while immediate
nearby regions may have probability of a zero-output around 0-20%. The unappealing nature of this estimate
is in that, instead, we would like to see a rather smooth function of the probability of a hazard.

Method (c) constructs a latent GASP and a censored GASP fMc
a (·) for function fa(x) which is censored at

a = 0 and allows for positive values

fMc
a (·) | ·, (xO,xC), f(xO), f(xC) < 0 ,

whose predictive distribution at point x′ is

fMc
a (x′) | x′, (xO,xC), f(xO), f(xC) < 0 =

{
fMc(x′) | x′, f(xO), f(xC) < 0, fa(x

′) > 0∫ 0

−∞ p(f(x′) | f(xO), f(xC) < 0) df(x′), fa(x
′) = 0 .

The resulting latent GASP is shown in the left panel of Figure 4, and the corresponding censored GASP is
shown in the right panel of Figure 4. Here, latent GASP adequately assigns almost all of its probability mass
to the negative range of values of a latent simulator output f(x). The probability of occurrence of a zero at
the censored input x = −0.2 is 87%. The censored GASP captures entirely function fa in the region, including
region of positive output.

Three methods (a), (b) and (c) posess their corresponding emulators. Performance of these emulators is
assessed numerically. d = 201 equidistant testing points xi ∈ [−1, 1] for all i = 1, . . . , d are taken. Numerically,
performance of three emulators of the simulator fa(x) is summarized in Tables 1, 2 and 3 using predictive
checks, namely root mean square predictive error (RMSPE), empirical frequency coverage (EFC) and length
of credible intervals (LCI). Let x = {x1, . . . , xd} be a set of d inputs with corresponding output of a simulator
fa(x1), . . . , fa(xd), and let the predictive distribution at each testing point be pi. This distribution is assumed
to have mean µi and 2.5% and 97.5% quantiles q0.025i and q0.975i , then

RMSPE =

(
d∑
i=1

(fa(xi)− µi)2/d

)1/2

,

EFC =

(
d∑
i=1

Ifa(xi)∈CIi

)
/d ,

LCI =
d∑
i=1

(q0.975i − q0.025i )/d ,
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Table 1: Comparison of three emulators: projected traditional GASP without zeros, projected traditional
GASP with zeros and censored GASP. Comparison is made on all testing points, including both, zero-output
points and positive-output points.

Method GASP RMSPE EFC LCI

(c) Censored 0.032 1.000 0.067
(b) Projected traditional w/ zeros 0.197 0.413 0.104
(a) Projected traditional w/o zeros 0.204 1.000 0.729

Table 2: Comparison of three emulators: projected traditional GASP without zeros, projected traditional
GASP with zeros and censored GASP. Comparison is made on zero-output testing points.

Method GASP RMSPE EFC LCI

(c) Censored 0.000 1.000 0.000
(b) Projected traditional w/ zeros 0.012 0.963 0.023
(a) Projected traditional w/o zeros 0.235 1.000 0.412

where CIi = (q0.025i , q0.975i ) is the 95% credible interval.
Table 1 provides comparison of emulators in the area of all output testing points, including zero-output

testing points of a simulator and including positive-output testing points of a simulator. The second table 2 pro-
vides comparison of emulators in the zero-output region only, and the third one (Table 3) provides comparison
in the positive region output only.

Table 1 reveals that projected emulator (a) (which does not have zeros in its training points) performs worse
than the other two emulators (b) or (c). E.g., emulator (a) and censored emulator (c) both have empirical
frequency coverage equal to 100%, however, RMSPE is at least 4 times larger (Table 3) for projected emulator
(a) than for censored emulator (c), and length of credible intervals is at least twice as large for projected
emulator (a) (Table 3). This is anticipated, however, since last emulator does not make use of zero training
points.

We turn then to comparison of a censored emulator (c) with projected emulator (b) (which has zero-training
points included in its construction). Visually, the censored emulator (c) performs similar to the projected
emulator (b). Emulator (b) in the area of positive output has the mean of the emulator closely following the
true function. In the area of positive output, the predicted mean also closely follows the true zero-valued
output. However, numerical comparison reveals clear differences in the behaviour of two emulators. Table 1
shows that RMSPE of censored emulator (c) is 6 times smaller than that of the projected emulator (b), length
of credible intervals is 1.5 times smaller for censored emulator (c), while empirical coverage is only 41% for
projected emulator (b) and 100% for censored emulator (c).

Numerical summaries for two emulators in zero-output testing region (Table 2) show that censored GASP
perfectly predicts zero-output in this region, producing RMSPE equal to zero and also essentially zero-length
credible intervals, while empirical coverage is 100%. Projected emulator (b) is a bit worse, with non-zero, but
still small RMSPE and LCI.

Considering the probability of a censored zero-valued output to occur in this region, the projected emulator

Table 3: Comparison of three emulators: projected traditional GASP without zeros, projected traditional
GASP with zeros and censored GASP. Comparison is made on positive output testing points.

Method GASP RMSPE EFC LCI

(c) Censored 0.042 1.000 0.112
(b) Projected traditional w/ zeros 0.254 0.042 0.157
(a) Projected traditional w/o zeros 0.184 1.000 0.283
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Figure 5: Probabilities of a zero at testing points assigned by the censored GASP.

(b) assigns the probability to be about 1/2 on average, while the censored emulator (c) assigns probability that
a zero-value occurs there to almost 1 which is demonstrated in Figure 5. The function luckily appears to be
smooth in its estimation of the hazard.

Comparison of emulators in positive output testing region (Table 3) shows different qualitative performance
of the two emulators, (b) and (c). RMSPE for censored emulator (c) is 6 times smaller than that for projected
emulator (b), length of credible intervals of two emulators is similar, but censored emulator (c) has length of
credible intervals LCI on average 1.4 times smaller. At the same time, empirical frequency coverage is only 4%
for projected emulator (b), while censored emulator (c) has 100% empirical coverage.

Along with the inferior performance of projected emulator (b) to censored emulator (c), the former does not
allow for the true distinction between small-height values and zero-height of the flow, while censored emulator
(c) captures this difference.

3 Case study

In this section the results of three methods of construction of stochastic approximations to the TITAN2D
computer model data are described. Implications on probabilistic assessment of a hazard from a volcano
pyroclastic flow are demonstrated.

15,122 locations were considered at which the GASPs were trained and tested. All these locations have both,
exact zero-height output points and positive height output points. Original number of 16,085 locations with
non-zero output had to be reduced because of computational reasons: there need to be a minimal number of
training points for constructing a traditional GASP. Only locations in which emulators have at least three non-
zero output points in a training set are considered. Analogously to the illustrative example the same training
points for construction of projected traditional GASP with zero-height output points included (method (b)) and
for censored GASP (method (c)). Only positive height training points are used for construction of projected
traditional GASP with zero-height output points excluded from its training set (method (a)). All the same
testing points are used for comparison of the performance of three emulators.

The output of a computer model has not been transformed for this case study, so the output is the maximum
height of a pyroclastic flow. This is due to the harmful mathematical effects anticipated from the results of
such a transformation as have been demonstrated (Kyzyurova 2017, 2019c).1

Table 4 summarizes the performance of three developed emulators according to methods (a), (b) and (c).

1Some commonly used variants of log-transformations are

• log(f(·)), where f(·) ∈ (0,∞),

• log f(·)
1−f(·) where f(·) ∈ (0, 1), and

• log(f(·) + 1), where f(·) ≥ 0 and this function may possibly take large values.
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Table 4: Comparison of three emulators: projected traditional GASP w/o zeros, projected traditional GASP
w/zeros and censored GASP. Comparison is made on all testing points, including both, zero-height output
points and positive-height output points.

Method GASP RMSPE EFC LCI

(c) Censored 0.649 0.941 1.091
(b) Projected traditional w/ zeros 0.618 0.914 1.371
(a) Projected traditional w/o zeros 5.356 0.945 7.893

Table 5: Average probability of a zero-height of three emulators: projected traditional GASP without zeros,
projected traditional GASP with zeros and censored GASP at zero-testing points.

Method GASP P (h = 0)

(c) Censored 0.968
(b) Projected traditional w/ zeros 0.504
(a) Projected traditional w/o zeros 0.712

Censored emulator (c) provides the best approximation while maintaining high empirical frequency coverage.
Censored GASP provides RMSPE comparable to that one of a projected traditional GASP with zeros included
in the training data, however the average length of credible intervals is smaller for censored GASP, than for a
projected traditional one.

Interestingly, projected traditional GASP without zeros in the data performs much worse than the other
two emulators: RMSPE and LCI are very large. This is because the amount of positive data points is only
about one third of the amount of all the data points (including zero-height output points) available. Also
zero-height testing points, similar to the simulation example, occur in “clusters”. This is intentionally so,
because the application with computer model TITAN2D has such a pattern of occurrence of zeros. Thus the
latent emulator from method (a) without zeros has to do extrapolation at such points. This becomes the major
drawback of method (a). As shown below, this is not so for methods (b) and (c).

Table 5 shows the average probability of a zero-height flow over all zero-output testing points. Censored
GASP results in such a flow with probability close to 1, which is what we would like to see from the performance
of an emulator. Two other traditional emulators result in average probabilities of zero being too far away from
the expected probability of 1. These are the artefacts of these GASPs, which make these GASPs inappropriate
for direct emulation of a zero-inflated output of a computer model.

Table 6 summarizes the performance of the censored GASP and projected traditional GASP with zeros
in the training data on zero-height testing points only. The RMSPE for censored GASP is about two thirds
of that of a projected traditional GASP and LCI is more than 6 times smaller for censored GASP. Empirical
frequency coverage of both emulators is more than 99%.

Table 7 summarizes the performance of the censored GASP and projected traditional GASP with zeros
in the training data on positive height testing points only. The RMSPE for censored GASP and traditional
GASP with zeros are close. Average length of predictive intervals LCI is about 25% greater for censored
GASP than for the traditional GASP, though the empirical frequency coverage (EFC) of projected traditional
GASP is only 80%, while the censored GASP has greater EFC of 86%. Projected traditional with zeros GASP

Table 6: Comparison of two emulators: traditional with zeros and censored GASP on zero-testing points.
Method GASP RMSPE EFC LCI

(c) Censored 0.111 0.999 0.175
(b) Projected traditional w/ zeros 0.160 0.998 1.165
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Table 7: Comparison of two emulators: traditional with zeros and censored GASP on non-zero testing points.
Method GASP RMSPE EFC LCI

(c) Censored 0.833 0.864 1.930
(b) Projected traditional w/ zeros 0.853 0.806 1.543
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Figure 6: Left: histogram of probability of zero by the censored GASP. These are probabilities at zero-height
testing points. Right: histogram of probability of a zero by the projected traditional GASP w/ zeros if posterior
is projected to be censored at zero.

underestimates uncertainty in a region of positive height of the flow, because it has two thirds of its training
data being zero-output data points included in construction of the GASP.

The distributions of resulting probabilities over all zero-testing points are presented in Figure 6. The left
panel of the figure provides a histogram of censored GASP probabilities of a zero to occur. This distribution is
highly concentrated near probability value being 1. The right panel of the figure demonstrates that projected
traditional GASP with zeros included as data points provides probability of a zero at zero-testing points
concentrated around 50%, indicating bad performance of an emulator.

These distributions induce the following distributions of a zero-height to occur among all testing points:
zero-height testing points and positive height testing points, shown in Figure 7. The left histogram of values,
which correspond to the ones given by censored GASP emulator shows that probability of a zero-height flow
concentrates near zero-probability or near 100% probability for a zero-height to occur. The histogram on
the right indicates that traditional GASP with zeros provides unattractive strong peak at probability of a
zero-height being around 50% in addition to extremes of near 0% and 100% probabilities.

In this work stochastic approximation using individual emulators at each spatial location is performed.
Alternative solution would be to utilize the parallel partial emulator (Gu & Berger 2016). However, the latter
and Kyzyurova (2017, 2019b) show that spatial structure on outputs is not relevant for the purpose of emulation.
To add, proper emulation of the zero output, employing censoring methodology, in this case becomes seemingly
a prohibitive task due to large dimensionality of the output over the product of the number of spatial locations
and the number of input parameters. Many independent emulators obtained at each spatial location is a
reasonable and computationally cheap alternative to parallel partial emulator. If the aim is to post-process the
resulting emulators, for instance, to provide probabilistic maps of volcano pyroclastic flow hazards, in theory
we might need to smooth out the results from such a post-processing, but in practice we receive rather smooth
performance across all emulators over the spatial locations.
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Figure 7: Left: histogram of probability of zero by the censored GASP. These are probabilities for all testing
points. Right: histogram of probability of zero by the traditional GASP w/ zeros if posterior is projected to
be censored at zero.

4 Probability of a hazard

Once a valid emulator of a pyroclastic flow height is constructed, (assuming this is done so employing the
methodology of the linked emulator (Kyzyurova et al. 2018) for coupled models which allows to submerge the
basal friction parameter of the computer model TITAN2D), and the distributions p(V, θ) of the initial volume
V and initiation angle θ are available, one may generate values of V and θ according to the distributions.
Conditional probability of a hazard (the maximum height of the flow exceeding some critical value hcrit.) given
the occurrence of the pyroclastic flow event (PF) may then be estimated as a Monte-Carlo integration

P (h > hcrit. | PF) =

∫ ∫
[0,2π)×[ε,∞)

P (h > hcrit. | V, θ)p(V, θ)dV dθ ≈
1

N

N∑
i=1

P (h > hcrit. | Vi, θi) ,

where ε is some small fixed value for a volume of the flow Vi, Vi ∼ Pareto(scale = 5 · 104, shape = .64) and
θi ∼ Unif(0, 2π) — based on the exploratory analysis provided in (Bayarri et al. 2009).

The intuition says that results obtained in this work show that, if calculated, such an estimate of a catastro-
phe would be very small, since for the most locations the height of the flow is zero. This means that, according
to the computer model, the catastrophe is indeed a rare event. Yet, locations most prone to the catastrophe
may be of interest to identify to enable reasonable policy making, perhaps, in order to avoid the choice of such
locations for subsequent use, such as, e.g., for a living, logistics or transportation use.

5 Appendix

This section builds on the idea to employ truncated versions of the GASP emulator motivated by an example
when such a mathematical construction is useful. Elements of construction of linked emulators by linking
traditional GASP with either censored or truncated GASP conclude this manuscript.

Sometimes another closely related to censoring but different problem — truncation of the output — arises.
One of the inputs to computer model TITAN2D is basal friction of a pyroclastic flow, friction of the flow
with the surface. The relationship between basal friction of a pyroclastic flow and volume of a flow has been
modelled (Ogburn et al. 2016), and stochastic representation has been obtained

y | x ∼ N (−0.5336 +−0.1971x, 0.00037205− 0.00054567x+ 0.00044155x2) , (4)
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where y is a basal friction, and x = V − 5.5 with V being volume of a flow on a log10 scale.
For large volumes of a pyroclastic flow there are only small number of historical data points, and an in-

ferential relationship (4) is less reliable. Geological reasoning suggests that basal friction does not decrease
that much for large volumes, as the inferential relationship states, and this relationship should adopt some
threshold c below which basal friction does not decrease. Thus, one appealing solution is to model the relation-
ship between basal friction and volume of a distribution, not directly using relationship (4), but having this
relationship truncated at c, i.e.

y | x ∼ T N (c,∞)(−0.5336 +−0.1971x, 0.00037205− 0.00054567x+ 0.00044155x2) .

5.1 Truncated projected GASP

5.1.1 Methodology

General setting for which a truncated version of the GASP may be applicable is introduced. Suppose that a
smooth function g(·) represents a simulator. The simulator data g(z) are evaluations of the simulator at several
input points z = (z1, . . . , z`). Suppose that additionally it is known that a simulator takes values in the range
(a, b). That is, a < g(zi) < b for each i = 1, . . . , `. The difference in this framework from censoring framework
(discussed in the main paper) constitutes in that there is no positive point mass on any value of the output
variable.

Thus an emulator which takes values in a specific region and has representation via an absolutely continuous
random variable is desirable to be constructed. Unfortunately, the following stochastic process

gMtr (·) ∼ T N (a,b)(µ(·), σ2c(·, ·)) ,

such that all finite-dimensional multivariate distributions are joint truncated multivariate normal, does not
exist, which may be demonstrated using results of (Horrace 2005).

An ad hoc method, (for instance, Lin & Dunson (2014), — for constraining GASPs of monotonic functions),
is to construct a traditional GASP, and then truncate posterior predictive distribution to a region (a, b).

Let gM(z′) | gM(z) be a posterior predictive distribution at a new input point z′, approximation to simulator
output g(z′), then the proposed approximation is

gMtr (z′) = gM(z′) | gM(z), a < gM(z′) < b .

Joint distribution of emulator output at points z and z′ follows multivariate normal distribution(
gM(z)
gM(z′)

)
∼ N

((
µ(z)
µ(z′)

)
, σ2

(
Cz c(z, z′)

c(z′, z) Cz′

))
,

where Cz and Cz′ are correlation matrices whose (k, l)th elements are given by a correlation function c(·, ·).
Conditional on the observed computer model evaluations gM(z) the truncated posterior predictive at any

input z′ follows a truncated to (a, b) normal distribution with mean µ∗(z′) and variance σ∗2(z′)), i.e.

gMtr (z′) | gM(z) ∼ T N (a,b)(µ
∗(z′), σ∗2(z′)) ,

where

µ∗(z′) = µ(z′) + c(z′, z)Cz
−1(gM(z)− µ(z)) ,

σ∗2(z′) = σ2(Cz′ − c(z′, z)Cz
−1c(z, z′)) .
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Figure 8: GASP and truncated GASP of the test function f(x). Circled points correspond to training inputs
which were used to fit the GASP emulator.

Mean, any quantile of the distribution gMtr (z′) | gM(z) and variance of this distribution have the following
closed-form expressions

E gMtr (z′) | gM(z) = µ∗(z′)−
φ
( b−µ∗(z′)

σ∗(z′)

)
− φ
(a−µ∗(z′)

σ∗(z′)

)
Φ
( b−µ∗(z′)

σ∗(z′)

)
− Φ

(a−µ∗(z′)
σ∗(z′)

)σ∗(z′) ,
QgMtr (z

′)|gM (z)(q) = Φ−1

(
Φ
(a−µ∗(z′)

σ∗(z′)

)
+ Φ

( b−µ∗(z′)
σ∗(z′)

)
− Φ

(a−µ∗(z′)
σ∗(z′)

)
q − µ∗(z′)

σ∗(z′)

)
,

V gMtr (z′) | gM(z) = σ∗2(z′)

(
1−

b−µ∗(z′)
σ∗(z′)

φ
( b−µ∗(z′)

σ∗(z′)

)
− a−µ∗(z′)

σ∗(z′)
φ
(a−µ∗(z′)

σ∗(z′)

)
Φ
( b−µ∗(z′)

σ∗(z′)

)
− Φ

(a−µ∗(z′)
σ∗(z′)

) −

(
E gM(z′) | gM(z)− µ∗(z′)

σ∗(z′)

)2
)
,

where QgMtr (z
′)|gM (z)(q) is a qth quantile of distribution gMtr (z′) | gM(z); φ and Φ are, respectively, probability

density function and cumulative distribution function of a standard normal distribution.

5.1.2 Illustrative example

The example demonstrates the methodology. Test function f(x) = 3x+ cos(5x) + 3.1 in the range x ∈ [−1.3, 1]
is considered. This function f(x) > 0, so there is the threshold c = 0 below which simulator output should
not exist. Truncated normal approximation accounts for truncation region with no assignment of positive
probability to regions of actual zero probability, opposed to the behaviour of a usual GASP, with substantial
probability for negative values.

5.2 Linking a GASP emulator with a truncated GASP

Following Kyzyurova et al. (2018), where the methodology for linked emulators have been introduced, formulae
for linked traditional GASP and truncated GASP are provided below. This section is followed by the one which
provides formulae for linking traditional and censored GASP emulators. Parameters of the GaSPs are assumed
to be either known or having corresponding point estimates plugged in (for example, using maximum likelihood
or maximum a posteriori estimation procedures). These frameworks are generalizable to linking GASPs with
their Bayesian implementation, but the corresponding theorems are not provided.
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Let denote truncated GASP emulators fMj , whose distributions at a new point is in the form

fMj (·) ∼ T N cj(sj, σ
2
j ) . (5)

Theorem. Let gM with given parameters θg = (β, σ2, {δj}j=1,...,d, η) be a GASP emulator of a simulator g
exercized at training input points z. Suppose the mean is linear in the qth cooordinate of an input z′, so that the
mean is h(z′)β = β0 + β1z

′
q). Let the gM(·) GASP product power correlation function smoothness parameters

αj of coordinates j ∈ b, . . . , d be equal to 2. For each j ∈ b, . . . , q−1 let fMj be an independent GASP emulator
of a simulator fj, corresponding to the coordinate j of the input to the simulator g, i.e. fMj (·). For each
j ∈ q, . . . , d let fMj be an independent truncated normal GASP emulator of a simulator fj, corresponding to
the coordinate j of the input to the simulator g, i.e. fMj (·) ∼ T N cj(sj, σ

2
j ) (5). Then the closed-form mean

Eξ and variance Vξ of the linked emulator ξ of the coupled simulator (g ◦ (fb, . . . , fd))(u) are

Eξ = β0 + β1Ef
M
q +

m∑
i=1

ai

b−1∏
j=1

e
−
(
|uj−zij |

δj

)αj q−1∏
j=b

I ij

d∏
j=q

I0
i
j ,

Vξ = σ2

(
1 + η −

m∑
k,l=1

{Cz−1}k,l
b−1∏
j=1

e
−
((
|uj−zkj |

δj

)αj
+

(
|uj−zlj |

δj

)αj) q−1∏
j=b

I1
k,l
j

d∏
j=q

I2
k,l
j

)
+

β2
0 + 2β0β1Ef

M
q + β2

1(VfMq + (EfMq )2)+

2
m∑
i=1

ai

b−1∏
j=1

exp

(
−
(
|uj − zij|

δj

)αj)
(β0I

i
q + β1I

+i
q)

q−1∏
j=b

I ij

d∏
j=q+1

I0
i
j+

m∑
k,l=1

alak

b−1∏
j=1

e
−
((
|uj−zkj |

δj

)αj
+

(
|uj−zlj |

δj

)αj) q−1∏
j=b

I1
k,l
j

d∏
j=q

I2
k,l
j − (Eξ)2,

where a = (a1, . . . , am)T = Cz
−1(gM(z)− h(z)β), tq = cq−sq

σ∗fq
and

EfMq =
(
sq + σ∗fqφ(tq)/Φ(−tq)

)
,

VfMq = σ∗fq

(
1− φ(tq)

Φ(−tq)

(
φ(tq)

Φ(−tq)
− tq

))
and

I ij =
1√

1 + 2
σ∗2fj

(uj)

δ2j

exp

(
−

(zij − µ∗fj(u
j))2

δ2j + 2σ∗2fj (uj)

)
,

I0
i
j =

1

Φ

(
− cj−sj

σ∗fj

) 1√
1 + 2

σ∗2fj
δ2j

exp

(
−(zij − sj)2

δ2j + 2σ∗2fj

)

Φ

2(zij − cj)σ∗2fj + (sj − cj)δ2j√
δ2j + 2σ∗2fj


,

I1
k,l
j =

1√
1 + 4

σ∗2fj
(uj)

δ2j

e

−

(
zkj+zlj

2 −µ∗fj
(uj)

)2

δ2
j
2 +2σ∗2

fj
(uj)

e
−

(zkj−zlj)
2

2δ2
j ,
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I2
k,l
j =

1

Φ

(
− cj−sj

σ∗fj

) 1√
1 + 4

σ∗2fj
δ2j

exp−(zkj − zlj)2

2δ2j

exp

(
−

(
zkj+zlj

2
− sj)2

δ2j/2 + 2σ∗2fj

)
Φ

2(zkj + zlj − 2cj)/δ
2
j + (sj − cj)/σ∗2fj√

4/δ2j + 1/σ∗2fj

 ,

I+
i
q =

1

Φ

(
− cj−sj

σ∗fj

) 1√
(1 + 2σ∗2fq /δ

2
q )
e
−

(ziq−sq)
2

δ2q+2σ∗2
fq

2σ∗2fq ziq + sqδ
2
q

2σ∗2fq + δ2q
Φ

2σ∗2fq (ziq − cq) + δ2q (sq − cq)

δqσ∗fq

√
2σ∗2fq + δ2q

+

σ∗fqδq√
δ2q + 2σ∗2fq

φ

2σ∗2fq (ziq − cq) + δ2q (sq − cq)

δqσ∗fq

√
2σ∗2fq + δ2q

 .

5.3 Linking a GASP emulator with a censored GASP

Let the predictive distribution of a censored GASP fMj (·) be

fMj (x | sj, σ2
j ) =

Φ
(
cj−sj
σj

)
, x = cj

1
σj
φ
(
x−sj
σj

)
, x > cj

, (6)

where φ(·) and Φ(·) are density and cumulative distribution functions of a normal distribution.
Theorem. Let gM with given parameters θg = (β, σ2, {δj}j=1,...,d, η) be an emulator of a simulator g

exercized at training input points z. Suppose the mean is linear in the qth coordinate of an input z′, so that the
mean is h(z′)β = β0 + β1z

′
q). Let the gM(·) GASP product power correlation function smoothness parameters

αj of coordinates j ∈ b, . . . , d be equal to 2. For each j ∈ b, . . . , q − 1 let fMj be an independent GASP
emulator of a simulator fj, corresponding to the coordinate j of the input to the simulator g, i.e. fMj (·). For
each j ∈ q, . . . , d let fMj be an independent censored GASP emulator of a simulator fj, corresponding to the
coordinate j of the input to the simulator g, i.e. fMj (·) (6). Then the mean Eξ and variance Vξ of the linked
emulator ξ of the coupled simulator (g ◦ (fb, . . . , fd))(u) are

Eξ = β0 + β1Ef
M
q +

m∑
i=1

ai

b−1∏
j=1

e
−
(
|uj−zij |

δj

)αj q−1∏
j=b

I ij

d∏
j=q

I0
i
j ,

Vξ = σ2

(
1 + η −

m∑
k,l=1

{Cz−1}k,l
b−1∏
j=1

e
−
((
|uj−zkj |

δj

)αj
+

(
|uj−zlj |

δj

)αj) q−1∏
j=b

I1
k,l
j

d∏
j=q

I2
k,l
j

)
+

β2
0 + 2β0β1Ef

M
q + β2

1(VfMq + (EfMq )2)+

2
m∑
i=1

ai

b−1∏
j=1

exp

(
−
(
|uj − zij|

δj

)αj)
(β0I

i
q + β1I

+i
q)

q−1∏
j=b

I ij

d∏
j=q+1

I0
i
j+

m∑
k,l=1

alak

b−1∏
j=1

e
−
((
|uj−zkj |

δj

)αj
+

(
|uj−zlj |

δj

)αj) q−1∏
j=b

I1
k,l
j

d∏
j=q

I2
k,l
j − (Eξ)2 ,
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where a = (a1, . . . , am)T = Cz
−1(gM(z)− h(z)β), tq = cq−sq

σ∗fq
and

EfMq =
(
sqΦ (−tq) + σ∗fqφ(tq) + cqΦ(tq)

)
,

VfMq = c2qΦ(tq) + σ∗2fq

(
Φ(−tq)− φ(tq)

(
φ(tq)

Φ(−tq)
− tq

))
+(

sqΦ(−tq) + σ∗fqφ(tq)
)2

Φ(−tq)
− (EfMq )2 ,

and

I ij =
1√

1 + 2
σ∗2fj

(uj)

δ2j

exp

(
−

(zij − µ∗fj(u
j))2

δ2j + 2σ∗2fj (uj)

)
,

I0
i
j = exp

(
−(cj − zij)2

δ2j

)
Φ

(
cj − sj
σ∗fj

)
+

1√
1 + 2

σ∗2fj
δ2j

exp

(
−(zij − sj)2

δ2j + 2σ∗2fj

)
Φ

2(zij − cj)σ∗2fj + (sj − cj)δ2j√
δ2j + 2σ∗2fj

 ,

I1
k,l
j =

1√
1 + 4

σ∗2fj
(uj)

δ2j

e

−

(
zkj+zlj

2 −µ∗fj
(uj)

)2

δ2
j
2 +2σ∗2

fj
(uj)

e
−

(zkj−zlj)
2

2δ2
j ,

I2
k,l
j = exp

(
−(cj − zkj)2

δ2j
− (cj − zlj)2

δ2j

)
Φ

(
cj − sj
σ∗fj

)
+

1√
1 + 4

σ∗2fj
δ2j

exp

(
−(zkj − zlj)2

2δ2j

)
exp

(
−

(
zkj+zlj

2
− sj)2

δ2j/2 + 2σ∗2fj

)

Φ

2(zkj + zlj − 2cj)/δ
2
j + (sj − cj)/σ∗2fj√

4/δ2j + 1/σ∗2fj

 ,

I+
i
q = cqe

−
(cq−ziq)

2

δ2q Φ

(
cq − sq
σ∗fq

)
+

1√
(1 + 2σ∗2fq /δ

2
q )
e
−

(ziq−sq)
2

δ2q+2σ∗2
fq

2σ∗2fq ziq + sqδ
2
q

2σ∗2fq + δ2q
Φ

2σ∗2fq (ziq − cq) + δ2q (sq − cq)

δqσ∗fq

√
2σ∗2fq + δ2q

+

σ∗fqδq√
δ2q + 2σ∗2fq

φ

2σ∗2fq (ziq − cq) + δ2q (sq − cq)

δqσ∗fq

√
2σ∗2fq + δ2q

 .
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