
Calibration of mathematical computer models

Ksenia N. Kyzyurova
The University of Sheffield, UK

kseniak.ucoz.net, ksenia.kyzyurova@gmail.com

November 26, 2019

Abstract

The problem of calibration of mathematical computer models with respect to collected data occasionally
occurs in contemporary research. Calibration task is analogous to identifying the preimage of a set of
experimental or observational data under a certain computer model — function over an input space of
parameters to that model. Identified preimage is formed as a subset of the input space to the computer
model. In its turn, collected data is typically described by means of probability distributions; thus, leading
to performing probabilistic calibration within the Bayesian framework. Bayesian inversion is considered
advantageous over other non-Bayesian or pseudo-Bayesian approaches because of interpretability of its
results.

In practice, calibration quickly runs into computational obstacles: the shape of the posterior distribu-
tion resulting from the Bayesian inversion may be “ugly”, such that standard approaches to its estimate
(including Markov chain Monte-Carlo (MCMC) approximation) are prohibitive. Instructional examples
are provided for illustration. We conclude that calibration must be performed together with investigation
of its scientific computing issues and software/hardware numerics.

1 Introduction

A computer model is a simulator based on mathematical representation of a natural phenomenon. Given a set
of initial values of input parameters in the input space X to a computer model f , a value in the output space
Y is obtained. If observations corresponding to the output of the model are collected, a theoretical model may
be assessed on the agreement to the collected data. Moreover, given a computer model and collected data, one
might inquire which values of inputs to the model could have generated the collected data; thus, performing
calibration of a model.

Calibration is, therefore, analogous to finding an inverse image of function f : X → Y , given a set of n
values y = (y1, . . . , yn) ∈ Y , that is f−1(y) = {x = (x1, . . . , xn) ∈ X : f(xi) = yi ∀ i = 1, . . . , n}. However,
this is indeed only an analogy, since in practice calibration involves (a) a computationally intensive computer
model or a system of such models, and (b) noisy collected data which does not arise from the computer model
itself but is obtained in either an experiment or observed in nature. Calibration framework which accounts for
these two levels of complexity is presented in this study.

Examples of computer models with the properties described above include scientific models of volcano
pyroclastic flows (Pitman et al. 2003, Pitman & Le 2005), volcano ash transport and dispersal model (Bursik
et al. 2012) and engineering system for carbon sequestration (United States Department of Energy carbon-
capture initiative). The input space of parameters X to such models varies from low to high dimensionality.
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We assume throughout that the number of parameters is at most only moderately large, consisting of no more
than several dozens of parameters, as have been observed in these and other models (Ghanem 2018). In practice,
high-dimensional space has been already reduced with suitable sensitivity analysis for an input space, or simply
main inputs have been identified by experts (Madankan et al. 2014); thus, the input space X is irreducible
further.

Analytic solution f to such a computer model (or simply a computer model itself) of a kind given in the
examples, for a particular configuration of input parameters, is typically not available and is demanding for
numerical approximation to the solution. In its turn numerical procedure takes considerable time to run, so
that execution of a computer model at all desired input configurations is either not feasible and/or involves
a trade-off between computational time and numerical error associated with that procedure (Gramacy & Lee
2012, Chkrebtii et al. 2016).

Another issue is logistical: storage and sharing of large volumes of input and output data from a com-
puter model is problematic and not desirable. Thus, we assume that a computer model is required to be
approximated by a statistical surrogate. Such approximations are constructed relying only on a handful of
inputs-outputs available from the execution of a model. One example is a Gaussian Process emulator of a
computer model (Santner et al. 2003). This type of surrogates has been proved to be useful and is employed
in this work.1

Once a computer model and/or its approximation is made available, its calibration must incorporate col-
lected data. Experimental or observational, measured or otherwise collected data, due to noise in the data,
is convenient to characterize by distributional assumptions on the data. This leads to the natural choice of
performing calibration within the framework of Bayesian inversion. This framework proposes a probabilistic
version of identifying an inverse image of a deterministic function, a computer model f .

We start the calibration study with the exposition of a forward problem in Section 2: construction of
an emulator of a computer model and that of a system of computer models. Section 3 introduces Bayesian
inversion, that is calibration of a computer model involving its surrogate with respect to collected data. Section 4
concludes with further research directions.

2 Forward problem

Gaussian process emulator of a computer model. Let function g(·) denote a computer model. Suppose
a computer model has been evaluated at m input sets of parameters x = (x1, . . . ,xm). Each input xi =
(xi1, . . . , xid)

T is d-dimensional. Once a computer model has been evaluated at x, output values g(x) are
available. In this exposition output space Y ∈ R is one-dimensional.

Fast statistical approximation to a computer model g is constructed assuming that model g represents a
sample from a Gaussian process gM(·) and given pairs of inputs-outputs {x,g(x)}. While these inputs-outputs
are from the model g, they also denote pairs of inputs-outputs {x,gM(x)} from the approximation, such that
{x,gM(x)} = {x,g(x)}.

For brief mathematical introduction we only state the general notation of a Gaussian process emulator
(GASP), that is, the predictive Gaussian process, conditional on pairs {x,gM(x)},

gM(·) | ·,x,gM(x) ∼ GASP(µ∗g(·), σ∗2g (·, ·)) , (1)

where µ∗g(·) is the predictive mean and σ∗2g (·, ·) is the predictive variance-covariance matrix. These functions
are specified parametrically.2

1The consistency of Gaussian process approximations with the original solution to the model has been shown in Stuart &
Teckentrup (2018).

2This introduction to the GASP methodology suffices for the purpose of this work. Detailed exposition may be found in,
e.g. (Kyzyurova et al. 2018). In there a GASP emulator builds on developments in (Bayarri et al. 2007) and objective Bayesian
implementation of the emulator following (Gu et al. 2018, Berger et al. 2001).
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The notation (1) means that probabilistic approximation to a computer model output at any set of inputs
x∗ is given by a corresponding joint predictive normal distribution, conditional on m pairs of inputs-outputs
{xi, g(xi)}mi=1,

gM(x∗) | x∗,x,gM(x) ∼ N (µ∗g(x
∗), σ∗2g (x∗,x∗)) .

where µ∗g(x
∗) denotes the mean and σ∗2g (x∗,x∗) is the covariance matrix evaluated at inputs x∗.

Emulator of a system of computer models. Having introduced the framework for an emulator of a
single computer model we turn to a question on how to approximate a coupled system of computer models
mathematically expressed as a composition g ◦ f(·) of two parts g(·) and f(·), if only the two submodels g(·)
and f(·) are independently observed, while the composition g ◦ f(·) is not.

Let two conditional stochastic processes gM(·) and fM(·) be emulators of two computer models g : X → Y
and f : Υ→ X

gM(·) | ·,x,gM(x) ∼ GASP(µ∗g(·), σ∗2g (·, ·)) , (2)

fM(·) | ·,u, fM(u) ∼ GASP(µ∗f (·), σ∗2f (·, ·)) . (3)

Then the coupled system of models g ◦ f(·) which has not been observed may be approximated using the linked
emulator given by

(g ◦ f)M(·) | ·,x,gM(x),u, fM(u)

or its Gaussian approximation linked GASP. What has been missing in that work is the correlation structure
emerging in these two emulators.

Lemma. Following the notation of the linked emulator, let ξ1 = (g ◦ f)M(u1) and ξ2 = (g ◦ f)M(u2) be two
random variables of a linked emulator (g ◦ f)M at new respective inputs u1 ∈ Υ and u2 ∈ Υ, then covariance
between ξ1 and ξ2 by total law of covariance is

Cov(ξ1, ξ2) = EfM (u1),fM (u2)Cov
(
gM | fM(u1), gM | fM(u2)

)
+

CovfM (u1),fM (u2)

(
EgM |fM (u1)g

M ,EgM |fM (u2)g
M
)
. (4)

Using this lemma, closed-form expression of covariance between variables of a linked emulator stochastic
process in some special cases may be found. We state the corresponding theorem in the appendix 5.1 for
completeness of this work.

Correlation structure of any emulator we consider — GASP emulator, linked emulator or linked GASP
— determines the smoothness of sample trajectories of that emulator. This feature is illustrated in the next
paragraph.

Influence of an emulator’s correlation structure on its sample trajectories. Illustrative example.
A damping sine function, namely, f(t, ω) = exp (−t) cos (ω t) where ω ∈ [1, 10] and t ∈ [0, 1], is chosen to
be a simulator. Assuming that this function is not known to us, the emulator is to be constructed. We
choose 24 training points xtr = (ttr,ωtr) over a grid 6 × 4 of the two-dimensional space {t, ω}. The grid is
shown in Figure 1, left panel. The simulator f has been evaluated at the training points resulting in outputs
f(xtr) = {f(ttri,ω

tr
i)}24i=1.

Emulator fM of the simulator, conditional on simulator input-output pairs of data {xtri , f(ttri,ω
tr
i)}24i=1, has

been constructed. For parametrization of the Gaussian stochastic process we have chosen squared-exponential
correlation function and linear mean function within the objective Bayesian implementation of its construction.
Resulting emulator is shown in Figure 1, right panel. This emulator has been tested for adequacy of performance
on five testing points, also shown in the left panel of that Figure.

Testing points have been captured in the corresponding 95% credible area, resulting in 100% empirical
frequency coverage. The average length of credible intervals is 0.53 (ranging from 0.48 to 0.55), overall demon-
strating excellent performance.
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Figure 1: Illustration. Left panel shows chosen uniform design for training points shown with golden circles.
Five testing points, shown with green asterisks, comprise about 20% of training design points. Right panel
shows the constructed emulator. The emulator’s 95% central credible area is enclosed within the two grey
surfaces. Golden circles are the design points.

At a set of m new inputs x′ = (t′,ω′), the emulator fM is given by the normal predictive distribution with
the mean µ∗f (x

′) and covariance matrix σ∗2f (x′,x′), that is

fM(x′) | x′,xtr, f(xtr) ∼ N (µ∗f (x
′), σ∗2f (x′,x′)) . (5)

Samples from this distribution may be obtained. One sample is shown in Figure 2, left panel. The sample is
smooth, because variance-covariance matrix is accounted for.

If correlation structure is omitted, this induces independence between all of its pairs of variables. One
sample from

N (µ∗f (x
′), diag

(
σ∗2f (x′,x′))

)
(6)

is shown in the right panel of Figure 2. As can be seen, the sample trajectory has lost all information about
smoothness of the Gaussian process samples, resulting in rough samples. Independence is imposed through the
identity correlation matrix Im×m.

3 Inverse problem

We now assume that an emulator (1) of the computer model g has been constructed. We turn to the question
of calibrating this model using its approximation (1) with respect to, first, noiseless observations, and, second,
with respect to noisy observations.

3.1 Calibration with respect to noiseless collected data.

Suppose that n experimental or observational data points y = (y1, . . . , yn)T have been collected; each ith point
yi, i = 1, . . . , n has been obtained under some input conditions x∗i ∈ X. These input conditions are assumed to
belong to the same input space x∗i ∈ X as the computer model inputs.

Each ith input x∗i is comprised of a set of control variables x∗,ci ∈ Rd1 (say, first d1 inputs) and a set of
calibration variables x∗,pi ∈ Rd2 , the set of the rest d2 = d − d1 variables; i.e. x∗ = {x∗,c,x∗,p}. A subset of
control variables x∗,c is set and known. A subset of x∗,p is unknown. However, we assume that the unknown
conditions are the same for all data points, i.e. x∗,p1 = x∗,p2 = . . . = x∗,pn = ω.
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Figure 2: Illustration. Left panel: one sample path from the emulator (5) which accounts for the correlation
structure, resulting in a smooth trajectory. Right panel: one sample path from the distribution (6) for which
the correlation structure is absent, thus using only information from marginals of the predictive GASP.

Calibration aims at identifying such values of parameters ω, that computer model output (that is of its
approximation) gM(x∗) = gM(x∗,c1 ,ω), . . . , gM(x∗,cn ,ω) obtained at inputs x∗ with parameters ω plugged in
matches closely experimental data y.

Conditional on the computer model data x,gM(x), within the emulation framework, computer model output
gM(x∗) = gM(x∗,c,ω) is given by the predictive distribution

gM(x∗,c,ω) | x∗,c,ω,x,gM(x) = (gM(x∗,c1 ,ω), . . . , gM(x∗,cn ,ω))T | x∗,c,ω,x,gM(x) . (7)

This yields the likelihood L(ω; y) = p(y | x∗,c,ω,x,gM(x)) for to-be calibrated parameters ω, which is
given by the distribution of experimental data y = (y1, . . . , yn)T observed at x∗

L(ω; y) = p(gM(x∗,c1 ,ω) = y1, . . . , g
M(x∗,cn ,ω) = yn | x∗,c,ω,x,gM(x)) . (8)

To complete Bayesian specification of the model, one must specify the prior distribution for unknown
parameters ω. In the calibration setting prior distribution p(ω) on parameters ω is, though, possibly vague,
but an expert-elicited prior.

The solution to the calibration problem is the posterior distribution p(ω | y,x∗,c,x,gM(x)). For convenience
the short notation is p(ω | y) which implicitly assumes conditioning on known controlled settings x∗,c and
computer model data, that is, pairs of observations {x,gM(x)}. Posterior distribution is then obtained via the
Bayes’ theorem

p(ω | y) =
L(ω; y)p(ω)∫
L(ω; y)p(ω) dω

. (9)

This distribution is well-defined since the prior p(ω) is defined on closed space of parameters, and, therefore,
the posterior is proper. Thus, the numerical solution (9) to the calibration problem always exists.

Qualitative assessment of calibration results. Ideally, posterior p(ω | y) identifies a small set of most
probable parameters ω such that computer model data evaluated at these values matches closely collected data
y. The assessment of agreement between the theoretical computer model and experimental or observational
data may be done subjectively or objectively. Mathematical methodology of doing so is discussed in (Kyzyurova
2019a) and shown in the study (Kyzyurova 2019b).

This step is important in practice because, in the unfortunate scenario, one may find that even being
evaluated at the most probable values of ω, computer model output may not match the collected data, thus,
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Figure 3: Illustrative example. The true posterior density is shown with a green solid line and obtained under
the model (11). The posterior obtained with absent correlation structure (12) is shown with a dashed orange
line. A green star indicates the true value of the parameter ω.

resulting in no agreement between the theory and the data. Such a case would indicate a crucial problem with
either a theoretical computer model or a prior on calibration parameters p(ω), or both; demanding for more
inquiry into domain knowledge and work with field experts for problem analysis.

Illustrative example. Continuing the previous example which started in Section 2: let the true value
of parameter ω be equal to 5. Let also experimental data y be collected at controlled input values t =
(0.1, 0.7, 0.75)T, that is y = (f(0.1, 5), f(0.7, 5), f(0.75, 5))T.

The GASP approximation to a computer model f provides the likelihood for ω via the predictive distribution
L(ω; y) = p(fM(t, ω) = y | t, ω,xtr, f(xtr)) given by its mathematical representation (5)

L(ω; y) = N (y | µ∗f (t, ω), σ∗2f ((t, ω), (t, ω))) , (10)

where this normal distribution of experimental data y is determined by the mean vector µ∗f (t, ω) and the
variance-covariance matrix σ∗2f ((t, ω), (t, ω)); both of which depend on an unknown parameter ω which we
would like to calibrate.

Assuming that experts may only provide broad prior information on the parameter ω, a typical prior
information is set as uniform on all possible values identified by the experts. In this particular simulation
example, that would be a uniform distribution ω ∼ U(1, 10).3 The following posterior corresponding to the
calibration with the uniform (flat) prior on parameter ω is shown in Figure 3 with a green solid line

p(ω | y) ∝ N
(
y | µ∗f (t, ω), σ∗2f ((t, ω), (t, ω))

)
p(ω) . (11)

The mass of the true posterior is concentrated around the true value of the parameter ω = 5 showing good
parameter recovery.

3This distribution has a restricted area of support, which is advantageous from computational perspective. However, if the
range of support is desired to be unrestricted, N (mean = 5.5, sd = 2.25) may be an alternative distribution which serves as the
prior on ω. Almost 95% of the mass of this distribution falls within the range [1, 10].
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Bayesian inversion (11) involves numerical computation of the inverse of the covariance matrix σ∗2f ((t, ω), (t, ω))
from the log-likelihood for different values of ω. This matrix may provide strong correlation between points,
such that its correct numerical inversion becomes a challenging problem even if the number of experimental
data points is small. Numerical errors coming from the inversion of the matrix in log-densities may preclude
obtaining the correct solution. In order to overcome this computational problem the information about the
correlation structure in the likelihood may be omitted, effectively resulting in the following distribution (12) as
an approximation to the true posterior (11)

p(ω | y) ∝ N
(
µ∗f (t, ω), diag

(
σ∗2f ((t, ω), (t, ω))

))
p(ω) . (12)

This distribution does not take information about GASP sample paths into account but only uses the infor-
mation from the marginals of the corresponding likelihood. Computing this approximated solution is trivial.

Proposition. Let the GASP correlation function be dependent of and decaying with distance along its
inputs, then the further apart from each other experimental data inputs are, the more their corresponding
cross-correlations are approaching zero. Therefore, the closer approximation (12) is to the true posterior (11).

Proof. Following exposition of the GASP, correlation between two inputs x1 and x2 is c(x1,x2) =∏d
j=1 c(x1j, x2j). For the jth coordinate correlations depend only on the distance c(x1j, x2j) = c(|x1j − x2j|),

whose properties are c(x1j, x2j) −→ 1 and c(x1j, x2j) −→ 0 as |x1j − x2j| −→ ∞. The last property proves the
proposition.

The resulting numerical approximation (12) from the illustrative example is shown with a dashed orange
line in Figure 3. In this example accounting for correlation structure in the GASP emulator is advantageous
because it provides valuable information on the smoothness of the emulator’s trajectories; resulting in that
the true posterior captures the true mode well (and only this mode) while the approximated solution has an
additional spurious mode.

In case of multimodality typical numerical solutions to the posterior based on variants of Markov chain
Monte-Carlo (MCMC) technique is going to be problematic, since switching between the modes is difficult.
One has to resort to the numerical integration involving analysis of the software/hardware error. Additionally,
multimodality would most likely indicate that more collected data is necessary to discern between the correct
and spurious modes.

3.2 Calibration with respect to noisy collected data

In practice collected data is not perfect and is observed with noise ε. That is, true values of y are not known
but may be estimated from the collected data. Collected data is also called field data and is denoted as yF . In
the previous section we assumed the ideal scenario of the absence of any noise in the collected data, resulting
in that yF = y. In practice, true data y is not known, but posterior estimate on the true values of y given the
collected data, i.e. the distribution p(y | yF ) may be obtained.

The more information about ε is available, the better the estimate of posterior p(y | yF ) is going to be.
The common knowledge is that the larger the noise in the data, the more replicates is required to be taken in
order to estimate the noise and reduce the noise in the derived estimates of the truth. Ultimately, the quality
of collected data matters most.

Having obtained posterior belief on the true values y | yF , Bayesian calibration becomes

p(ω | yF ) =

∫
Y
p(ω | y)p(y | yF )dy , (13)

where p(ω | y) is given by equation (9).4

4Computationally approximation to p(ω | yF ) may be obtained through sampling from the distribution p(y | yF ). For each of
the r independent samples ysmpli ∼ p(y | yF ), i = 1, . . . , r, the distribution ω | ysmpli may be obtained. All combined (to integrate
out y | yF ), marginal p(ω | yF ) is the posterior estimate of the unknown parameter ω. This approach is easily parallelizable, since
p(ω | ysmpli) is independent from p(ω | ysmplj) for all independent samples ysmpli, i = 1, . . . , r.
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This form of the posterior reflects that we may be unsure about the truth, true values y. The more sure we
are about the truth, the closer calibration framework (13) is to (9). Calibration (13) also states that we are able
to calibrate only to the extent that the observed data allow us to do it. This acknowledges the possibility that
calibration task with corrupt data (e.g., data with large noise or biased data or data with limited information
on how the data has been obtained) does not allow to perform calibration.

3.3 Other approaches to calibration

Other approaches to calibration are not Bayesian, therefore we omit a detailed discussion of them. These include
methods based on minimization of various metrics in Lp spaces between the collected data and computer model
data.5 These approaches necessarily provide a numerical answer but lack the interpretability of its results.
This is also true for the approach of Kennedy and O’Hagan.6 We demonstrate below that this approach is not
equivalent to the Bayesian solution. For brevity of exposition, assuming no bias in the computer model, KOH
framework is given as follows

yF (·) = gM(·) + ε(·),
gM(·) | x,gM(x) ∼ GASP(µ∗(·), σ∗2(·, ·)).

In this framework ε is assumed to be white noise, so that for the ith observation

εi ∼ N (0, σ2) iid ∀ i = 1, . . . , n,

where iid stands for independently and identically distributed.
KOH framework targets the following posterior distribution of ω within its framework

pKOH(ω | yF ) =

∫
Ξ
p(yF | ω, ξ)p(ω, ξ)dξ∫

Ω,Ξ
p(yF | ω, ξ)p(ω, ξ)dωdξ

. (14)

The targeting posterior from Bayesian inverse calibration framework (13) is given by the distribution p(ω |
yF ).

p(ω | yF ) =

∫
Y

p(y | ω)p(ω)∫
Ω
p(y | ω)p(ω)dω

∫
Ξ
p(yF | y, ξ)p(y | ξ)p(ξ)dξ

p(yF )
dy. (15)

Easy to see that the Bayesian answer (15) and KOH answer (14) are different in principle, and two frame-
works target different distributions, which are not equivalent; with KOH answer leading to biased estimates of
parameters. 7

Bayesian inverse framework (15) acknowledges that there are two approximations to the reality, i.e. to
the truth. One approximation comes from the computer model (and, thus, an emulator of that model),
another approximation comes from experimental observations. Bayesian calibration tries to reconcile these two
approximations. The true Bayesian answer also allows for incorporation of any noise structure in the collected
data, i.e. beyond the standard assumption of Gaussian additive noise.

A case study is provided in the Appendix for illustrative purposes of implementation of the framework in
practice.

5If p = 2, the minimization corresponds to the least squares method, that of the L2-norm.
6“Bayesian calibration of computer models”, Journal of Royal Statistical Society, Series B, 2001.
7This is especially so for the estimate of the noise parameter in the data. See illustrative example in the PhD thesis of Ksenia

N. Kyzyurova “On Uncertainty Quantification for Systems of Computer Models”, Duke University, 2017 (Kyzyurova 2017)

8



4 Conclusion

Fully Bayesian approach to calibration of a complex computer model with respect to collected data has been
outlined and illustrated with simulation examples. Next research directions are to formulate a number of
relevant practical examples together with investigation of its implementation challenges.

One potential example is to perform calibration of the model of the volcano eruption plume (Bursik et al.
2012) from a system of volcano ash transport and dispersal computer model with respect to collected data
reported in Gudmundsson et al. (2012) on sizes of observed volcano ash particles during Eyjafjallajökull,
Iceland volcano eruption in April-May 2010. This may lead to useful inference for construction of systems
which may predict volcano eruptions.

Another interesting research direction is investigation of simultaneous construction of designs for computer
model data together with designs for experimental data. Since both designs influence the quality of calibration
result, this research should lead to formulation of design strategies for robust inference in calibration tasks.

5 Appendix

5.1 Appendix A: Correlation structure of the linked GASP in a special case

Theorem. Let gM with given parameters θg = (β, σ2, {δj}j=1,...,d, η) be a GASP emulator of a simulator g
evaluated at training input points x, i.e. gM(·). Suppose the mean function is linear in the bth cooordinate
of an input x′, so that µ(x′) = β0 + β1x

′
b. Let gM(·) have a product power exponential correlation function

c(xk,xl) =
∏d

j=1 c(xkj, xlj), where

c(xkj, xlj) = exp

{
−
(
|xkj − xlj|

δj

)αj}
, (16)

with a range parameter δj ∈ (0,∞) and a smoothness parameter αj ∈ (0, 2] along the jth coordinate.
Let smoothness parameters αj of coordinates j ∈ b, . . . , d be equal to 2. For each j ∈ b, . . . , d let fMj be

an independent emulator of a simulator fj, corresponding to the coordinate j of the input to the simulator
g. Then covariance Cov(ξ1, ξ2) between two variables of the linked emulator ξ1 = (g ◦ (fb, . . . , fd))(u1) and
ξ2 = (g ◦ (fb, . . . , fd))(u2) evaluated at new inputs u1 and u2 to the coupled simulator (g ◦ (fb, . . . , fd))(·) is

Cov(ξ1, ξ2) = β2
0 + β0β1(µb

∗
1 + µb

∗
2) + β2

1(µb
∗
1µb
∗
2 + ρbσb

∗
1σb
∗
2)− (Eξ1)(Eξ2)+

σ2

b−1∏
j=1

c(u1j, u2j)
d∏
j=b

Jj +
m∑

k,l=1

(akal − σ2{C−1x }k,l)
b−1∏
j=1

c(u1j, xkj)c(xlj, u2j)
d∏
j=b

Jk,lj +

β0

m∑
i=1

ai

(
b−1∏
j=1

c(u2j, xij)
d∏
j=b

J ij,2 +
b−1∏
j=1

c(u1j, xij)
d∏
j=b

J ij,1

)
+

β1

m∑
i=1

ai

(
b−1∏
j=1

c(u2j, xij)J
+
2
i

b

d∏
j=b+1

J ij,2 +
b−1∏
j=1

c(u1j, xij)J
+
1
i

b

d∏
j=b+1

J ij,1

)
, (17)

where a = (a1, . . . , am)T = C−1x (gM(x)− µ(x)) and(
fj
M
1 (u1)

fj
M
2 (u2)

)
∼ N

((
µj
∗
1

µj
∗
2

)
,

(
σj
∗2
1 ρjσj

∗
1σj
∗
2

ρjσj
∗
1σj
∗
2 σj

∗2
2

))
(18)
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and

Jj =
δje
−

(µj
∗
1
−µj

∗
2
)2

δ2
j
+2(σj

∗2
1

+σj
∗2
2

−2ρjσj
∗
1
σj

∗
2
)√

δ2j + 2(σj∗21 + σj∗22 − 2ρjσj∗1σj
∗
2)
, (19a)

Jk,lj =
δ2j e
−2

(
δ2j
2 +σj

∗2
2

)(xkj−µj
∗
1
)2+(

δ2j
2 +σj

∗2
1

)(xlj−µj
∗
2
)2−2ρjσj

∗
1
σj

∗
2
(xkj−µj

∗
1
)(xlj−µj

∗
2
)

δ4
j
+2δ2

j
(σj

∗2
1

+σj
∗2
2

)+4(1−ρ2
j
)σj

∗2
1
σj

∗2
2√

δ4j + 2δ2j (σj
∗2
1 + σj∗22 ) + 4(1− ρ2j)σj∗21 σj∗22

, (19b)

J ij,k =
1√

1 + 2
σj∗2k
δ2j

exp

(
−

(xij − µj∗k)
2

δ2j + 2σj∗2k

)
, (19c)

J+
1
i

b =
δbe
− (µb

∗
1−xib)

2

δ2
b
+2σb

∗2
1 ((δ2b + 2σb

∗2
1 )µb

∗
2 + 2ρbσb

∗
2σb
∗
1(xib − µb∗1)√

(δ2b + 2σb∗21 )3
, (19d)

J+
2
i

b =
δbe
− (µb

∗
2−xib)

2

δ2
b
+2σb

∗2
2 ((δ2b + 2σb

∗2
2 )µb

∗
1 + 2ρbσb

∗
1σb
∗
2(xib − µb∗2)√

(δ2b + 2σb∗22 )3
. (19e)

5.2 Appendix B: Gibbs sampling from the model for experimental data with
iid Gaussian noise

Typically, however, experimental data y are observed with noise ε. An additive structure on the truth y and
noise ε is usually assumed

yFi = yi + εi, i = 1, . . . , n. (20)

This means that true value of experimental data y are not known, but may be estimated from the observed
field data yF if distribution of ε is known. Within the Bayesian framework posterior distribution p(y | yF ) on
the true values of y may be obtained.

Often ε is assumed to be white noise, so that for the ith observation

εi ∼ N (0, σ2) iid ∀ i = 1, . . . , n. (21)

yij ∼ N (µj, σ
2) (22)

for ith observation within group j ∈ 1, . . . , J . The model is complete with priors p(µ1, . . . , µJ , σ
2) ∝ 1

σ2 .
Estimates of parameters are easy to get via Gibbs sampling.

Full conditionals

µj | σ2,y ∼ N

(∑Nj
i=1 yij
Nj

,
σ2

Nj

)
, (23)

σ2 | µ,y ∼ IG

(
shape =

∑J
j=1Nj

2
, rate =

∑J
j=1

∑Nj
i=1 (yij − µj)2

2

)
, (24)

where Nj is the number of observations in group j.
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Table 1: Performance of emulator of the second simulator.

RMSPEbase/RMSPE EFC LCI

1.8352 98% 5.43

5.3 Appendix C: Correlated noisy observations yi,1
...

yi,Nj

 ∼ N

 µ1

...
µNj

 , σ2Σ

 . (25)

for the ith set of observations in groups j ∈ 1, . . . , J . We assume that the sets of observations are independent
of each other. Matrix Σ is a matrix of correlations between observations in different groups. We will assume
that this matrix is known.

The inference in this model, completing model specification as in the previous section 5.2, via Gibbs sampling
requires a change in the full conditional for variance.

σ2 | y,µ ∼ IG

(
shape =

∑J
j=1Nj

2
, rate =

∑Ni
i=1 vΣ−1vT

2

)
(26)

where v =
(
yi,1 − µ1, . . . , yi,J − µJ

)T
and Ni is the number of experiments.

5.4 Appendix D: Case study

Motivated originally by the problem of calibration of large-scale engineering systems which could not or have
not yet been observed, a case study is provided for instructional purpose. As before, the coupled system of
models z = g ◦ f consists of individual models g and f . The model g is mathematical, while the model f is
described by an empirical physical law.

Damped sine function of the form

g(x = (x1, x2),ω = (ω1, ω2), y1) = x2 exp{−x1/y1} cos{ω1x1 + ω2}

is a simulator g which has 5 inputs X1, X2, ω1, ω2 and Y1 and the output is Z. The construction and the
performance of the corresponding emulator of this model is described below.

A GASP emulator of the model 27, based on 50 runs of this simulator, is constructed. The emulator is
tested on another 50 test points. Parameters ω = (ω1, ω2) are parameters to calibrate.

Z = GASP(X1, X2, ω1, ω2, Y1) (27)

The emulator performs very well, as can be seen from the summary provided in Table 1. Root-mean square
predictive error (RMSPE) is 1.83 times smaller than the base estimate RMSPEbase, while frequency coverage
is 98%.

As for the model f : quantity Y1 is assumed to be proportional to X1 due to some empirical linear physical
law, which requires two main parameters, intercept θ1 and slope θ2 for its statistical description

Y1 = N
(
θ1 + θ2X1, σ

2
)
. (28)

Additional parameter is variance σ2 (or standard deviation σ) which accounts for variability in the data.
In this illustrative example the data are generated from this model with true values of parameters θ = (19, 6)

and true noise variance σ2 = 0.04. We imagine that 11 data points corresponding to this model has been
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Table 2: Case study. Posterior summaries for parameters θ. Namely, 2.5% and 97.5% of the posteriors
distributions are shown.

2.5% 97.5%
θ1 | X1,Y1 18.79 19.30
θ2 | X1,Y1 5.33 6.25

Figure 4: The first model. Black dots correspond to 11 collected data points.

collected. Now the goal is to perform calibration for parameters ω, by first calibrating the model f , and then
the coupled model z = g ◦ f .

With 11 experimental pairs of data points X1,Y1 corresponding to model f , we perform Bayesian inversion
and obtain inferential relationship between X1 and Y1. Posterior summaries of parameters θ are available in
Table 2. The resulting relationship with a 95% credible region is shown in Figure 4. The implementation of
inference from this statistical model is based on the Gibbs sampling algorithm. The sampling involves full
conditionals which are derived and stated in the Appendix 5.5.

We construct the linked emulator of two models and then calibrate parameters ω using the linked GASP
of the complex model and 20 experimental data points corresponding to the output of the model g. Experi-
mental data are sampled from the true bivariate normal distribution N (µ,Σ), where µ = (5, 9π/10)T and Σ
is variance-covariance matrix with corresponding standard deviations along the two dimensions being 0.1 and
0.05 respectively, with correlation coefficient between variables in two dimensions equal to ρ = −0.6.

We assume that experimental observations are noise-free, while true parameters ω follow some distribution
(rather than being point-wise truth with some assumed noise structure). The result of the calibration is shown
with bivariate density plot for parameters ω in Figure 5.

We check that the match between the output of an emulator and the experimental data is acceptable. Fig-
ure 6 shows the predictive distribution evaluated at the highest posterior density point of calibrated parameters
ω together with the experimental data. From the plot we see that, indeed, the developed emulator matches the
experimental data well. All 20 points of experimental data points stay within 95% credible area of the linked
emulator.
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Figure 5: Posterior probability density for ω.

Figure 6: Predictive distribution from the linked emulator evaluated at the highest posterior density point
of calibrated parameters ω, together with experimental data. Two grey surfaces show central 95% credible
region of the emulator over the region of inputs x1 and x2 and output Z. Gridded surface shows the mean
of the emulator. Green points correspond to experimental data. Two perspectives on the emulators surfaces
summaries are given for clear visualization.
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5.5 Appendix E: Gibbs sampling from the statistical model from the case study

θ1 | θ2, σ2,y,xf ∼ N
(

(y − θ2xf ), var =
σ2

n

)
, (29)

θ2 | θ1, σ2,y,xf ∼ N

(∑n
i=1(yi − θ1)x

f
i∑n

i=1{x
f
i }2

, var =
σ2∑n

i=1{x
f
i }2

)
, (30)

σ2 | y,xf ,θ ∼ IG
(

shape =
n

2
, rate =

∑n
i=1(yi − θ

T(1, xi)
T)2

2

)
. (31)

where n is the number of observational data points.
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Magnússon, E., Högnadóttir, T., Petersen, G. N. et al. (2012), ‘Ash generation and distribution from the
April-May 2010 eruption of eyjafjallajökull, iceland’, Scientific reports 2, 572.

Kyzyurova, K. N. (2017), On Uncertainty Quantification for Systems of Computer Models, PhD thesis, Duke
University.

Kyzyurova, K. N. (2019a), Analysis of scientific computer models. Methodology in numerical simulator data
analysis.

Kyzyurova, K. N. (2019b), ‘On scoring rules and frequency predictive measures’.

Kyzyurova, K. N., Berger, J. O. & Wolpert, R. L. (2018), ‘Coupling Computer Models through Linking Their
Statistical Emulators’, SIAM/ASA Journal on Uncertainty Quantification 6(3), 1151–1171.

14



Madankan, R., Pouget, S., Singla, P., Bursik, M., Dehn, J., Jones, M., Patra, A., Pavolonis, M., Pitman,
E., Singh, T. et al. (2014), ‘Computation of probabilistic hazard maps and source parameter estimation for
volcanic ash transport and dispersion’, Journal of Computational Physics 271, 39–59.

Pitman, E. B. & Le, L. (2005), ‘A two-fluid model for avalanche and debris flows’, Philosophical Transactions
of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 363(1832), 1573–1601.

Pitman, E. B., Nichita, C. C., Patra, A., Bauer, A., Sheridan, M. & Bursik, M. (2003), ‘Computing granular
avalanches and landslides’, Physics of fluids 15(12), 3638–3646.

Santner, T. J., Williams, B. J., Notz, W. I. & Williams, B. J. (2003), The design and analysis of computer
experiments, Vol. 1, Springer.

Stuart, A. & Teckentrup, A. (2018), ‘Posterior consistency for Gaussian process approximations of Bayesian
posterior distributions’, Mathematics of Computation 87(310), 721–753.

15


	Introduction
	Forward problem
	Inverse problem
	Calibration with respect to noiseless collected data.
	Calibration with respect to noisy collected data
	Other approaches to calibration

	Conclusion
	Appendix
	Appendix A: Correlation structure of the linked GASP in a special case
	Appendix B: Gibbs sampling from the model for experimental data with iid Gaussian noise
	Appendix C: Correlated noisy observations
	Appendix D: Case study
	Appendix E: Gibbs sampling from the statistical model from the case study


